Pediatric Radiology

, Volume 36, Issue 11, pp 1119–1132 | Cite as

MR urography in children

  • J. Damien Grattan-SmithEmail author
  • Richard A. Jones


MR urography represents the next step in the evolution of uroradiology in children by combining superb anatomic imaging with quantitative functional evaluation in a single examination that does not use ionizing radiation. MR imaging has inherently greater soft-tissue contrast than other imaging techniques. When used in conjunction with dynamic scanning after administration of a contrast agent, it provides non-invasive analysis of the perfusion, concentration and excretion of each kidney. The purpose of this review is to outline our experience with more than 500 MR urograms in children. We outline our technique in detail, showing how we calculate differential renal function and how we assess concentration and excretion in the different regions of the kidney. We show that the dynamic contrast-enhanced data can be processed to yield quantitative measures of individual kidney GFR. In the clinical section we show how MR urography adds unique aspects to the anatomic evaluation of the urinary tract, and by combining the anatomic information with functional information, how we assess hydronephrosis and obstructive uropathy, congenital malformations, pyelonephritis and renal scarring.


MR urography Hydronephrosis Anatomy Renal function 


  1. 1.
    Grattan-Smith JD, Perez-Bayfield MR, Jones RA, et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304PubMedGoogle Scholar
  2. 2.
    Jones RA, Easley K, Little SB, et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1 functional assessment. AJR 185:1598–1607PubMedCrossRefGoogle Scholar
  3. 3.
    Jones RA, Perez-Brayfield MR, Kirsch AJ, et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50PubMedCrossRefGoogle Scholar
  4. 4.
    McDaniel BB, Jones RA, Scherz H, et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2 anatomic and functional assessment of uteropelvic junction obstruction. AJR 185:1608–1614PubMedCrossRefGoogle Scholar
  5. 5.
    Perez-Brayfield MR, Kirsch AJ, Jones RA, et al (2003) A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol 170:1330–1334PubMedCrossRefGoogle Scholar
  6. 6.
    Avni EF, Bali MA, Regnault M, et al (2002) MR urography in children. Eur J Radiol 43:154–166PubMedCrossRefGoogle Scholar
  7. 7.
    Borthne A, Nordshus T, Reiseter T, et al (1999) MR urography: the future gold standard in paediatric urogenital imaging? Pediatr Radiol 29:694–701PubMedCrossRefGoogle Scholar
  8. 8.
    Borthne A, Pierre-Jerome C, Nordshus T, et al (2000) MR urography in children: current status and future development. Eur Radiol 10:503–511PubMedCrossRefGoogle Scholar
  9. 9.
    Nolte-Ernsting CC, Adam GB, Gunther RW (2001) MR urography: examination techniques and clinical applications. Eur Radiol 11:355–372PubMedCrossRefGoogle Scholar
  10. 10.
    Riccabona M (2004) Pediatric MRU—its potential and its role in the diagnostic work-up of upper urinary tract dilatation in infants and children. World J Urol 22:79–87PubMedGoogle Scholar
  11. 11.
    Riccabona M, Riccabona M, Koen M, et al (2004) Magnetic resonance urography: a new gold standard for the evaluation of solitary kidneys and renal buds? J Urol 171:1642–1646PubMedCrossRefGoogle Scholar
  12. 12.
    Riccabona M, Ruppert-Kohlmayr A, Ring E, et al (2004) Potential impact of pediatric MR urography on the imaging algorithm in patients with a functional single kidney. AJR 183:795–800PubMedGoogle Scholar
  13. 13.
    Rohrschneider WK, Becker K, Hoffend J, et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532PubMedCrossRefGoogle Scholar
  14. 14.
    Rohrschneider WK, Haufe S, Clorius JH, et al (2003) MR to assess renal function in children. Eur Radiol 13:1033–1045PubMedCrossRefGoogle Scholar
  15. 15.
    Rohrschneider WK, Haufe S, Wiesel M, et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694PubMedCrossRefGoogle Scholar
  16. 16.
    Rohrschneider WK, Hoffend J, Becker K, et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of the normal status in an animal model. Pediatr Radiol 30:511–522PubMedCrossRefGoogle Scholar
  17. 17.
    Brown SC, Upsdell SM, O’Reilly PH (1992) The importance of renal function in the interpretation of diuresis renography. Br J Urol 69:121–125PubMedGoogle Scholar
  18. 18.
    Goodman LS, Gilman A, Gilman AG (1990) The pharmacological basis of therapeutics. Pergamon Press, New YorkGoogle Scholar
  19. 19.
    Huang AJ, Lee VS, Rusinek H (2004) Functional renal MR imaging. Magn Reson Imaging Clin N Am 12:469–486, viPubMedCrossRefGoogle Scholar
  20. 20.
    Lee VS, Rusinek H, Noz ME, et al (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor J, Summers PE, Keevil SF, et al (1997) Magnetic resonance renography: optimisation of pulse sequence parameters and Gd-DTPA dose, and comparison with radionuclide renography. Magn Reson Imaging 15:637–649PubMedCrossRefGoogle Scholar
  22. 22.
    The HS, Ang ES, Wong WC, et al (2003) MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR 181:441–450Google Scholar
  23. 23.
    Heuer R, Sommer G, Shortliffe LD (2003) Evaluation of renal growth by magnetic resonance imaging and computerized tomography volumes. J Urol 170:1659–1663; discussion 1663PubMedCrossRefGoogle Scholar
  24. 24.
    van den Dool SW, Wasser MN, de Fijter JW, et al (2005) Functional renal volume: quantitative analysis at gadolinium-enhanced MR angiography—feasibility study in healthy potential kidney donors. Radiology 236:189–195PubMedCrossRefGoogle Scholar
  25. 25.
    Bakker J, Olree M, Kaatee R, et al (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628PubMedGoogle Scholar
  26. 26.
    Krier JD, Ritman EL, Bajzer Z, et al (2001) Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. Am J Physiol Renal Physiol 281:F630–F638PubMedGoogle Scholar
  27. 27.
    Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725PubMedCrossRefGoogle Scholar
  28. 28.
    Rutland MD (1979) A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 52:134–137PubMedCrossRefGoogle Scholar
  29. 29.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  30. 30.
    Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672PubMedCrossRefGoogle Scholar
  31. 31.
    Hackstein N, Kooijman H, Tomaselli S, et al (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414PubMedCrossRefGoogle Scholar
  32. 32.
    Pennington DJ, Lonergan GJ, Flack CE, et al (1996) Experimental pyelonephritis in piglets: diagnosis with MR imaging. Radiology 201:199–205PubMedGoogle Scholar
  33. 33.
    Rusinek H, Lee VS, Johnson G (2001) Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med 46:312–316PubMedCrossRefGoogle Scholar
  34. 34.
    Csaicsich D, Greenbaum LA, Aufricht C (2004) Upper urinary tract: when is obstruction obstruction? Curr Opin Urol 14:213–217PubMedCrossRefGoogle Scholar
  35. 35.
    Eskild-Jensen A, Gordon I, Piepsz A, et al (2005) Congenital unilateral hydronephrosis: a review of the impact of diuretic renography on clinical treatment. J Urol 173:1471–1476PubMedCrossRefGoogle Scholar
  36. 36.
    Peters CA (1995) Urinary tract obstruction in children. J Urol 154:1874–1883; discussion 1883–1884PubMedCrossRefGoogle Scholar
  37. 37.
    O’Reilly PH (2002) Obstructive uropathy. Q J Nucl Med 46:295–303PubMedGoogle Scholar
  38. 38.
    Klahr S (2001) Urinary tract obstruction. Semin Nephrol 21:133–145PubMedCrossRefGoogle Scholar
  39. 39.
    Wen JG, Frokiaer J, Jorgensen TM, et al (1999) Obstructive nephropathy: an update of the experimental research. Urol Res 27:29–39PubMedCrossRefGoogle Scholar
  40. 40.
    Koff SA, Binkovitz L, Coley B, et al (2005) Renal pelvis volume during diuresis in children with hydronephrosis: implications for diagnosing obstruction with diuretic renography. J Urol 174:303–307PubMedCrossRefGoogle Scholar
  41. 41.
    Smith BG, Metwalli AR, Leach J, et al (2004) Congenital midureteral stricture in children diagnosed with antenatal hydronephrosis. Urology 64:1014–1019PubMedCrossRefGoogle Scholar
  42. 42.
    Avni FE, Nicaise N, Hall M, et al (2001) The role of MR imaging for the assessment of complicated duplex kidneys in children: preliminary report. Pediatr Radiol 31:215–223PubMedCrossRefGoogle Scholar
  43. 43.
    Hellstrom M, Hjalmas K, Jacobsson B, et al (1985) Normal ureteral diameter in infancy and childhood. Acta Radiol Diagn (Stockh) 26:433–439Google Scholar
  44. 44.
    Campbell MF, Walsh PC, Retik AB (2002) Campbell’s urology. Saunders, PhiladelphiaGoogle Scholar
  45. 45.
    Ichikawa I, Kuwayama F, Pope JC 4th, et al (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898PubMedCrossRefGoogle Scholar
  46. 46.
    Mackie GG, Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114:274–280PubMedGoogle Scholar
  47. 47.
    Pope JC 4th, Brock JW 3rd, Adams MC, et al (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028PubMedGoogle Scholar
  48. 48.
    Glassberg KI, Stephens FD, Lebowitz RL, et al (1987) Renal dysgenesis and cystic disease of the kidney: a report of the Committee on Terminology, Nomenclature and Classification, Section on Urology, American Academy of Pediatrics. J Urol 138:1085–1092PubMedGoogle Scholar
  49. 49.
    Stock JA, Wilson D, Hanna MK (1998) Congenital reflux nephropathy and severe unilateral fetal reflux. J Urol 160:1017–1018PubMedCrossRefGoogle Scholar
  50. 50.
    Anderson PA, Rickwood AM (1991) Features of primary vesicoureteric reflux detected by prenatal sonography. Br J Urol 67:267–271PubMedCrossRefGoogle Scholar
  51. 51.
    Najmaldin A, Burge DM, Atwell JD (1990) Reflux nephropathy secondary to intrauterine vesicoureteric reflux. J Pediatr Surg 25:387–390PubMedCrossRefGoogle Scholar
  52. 52.
    Yeung CK, Godley ML, Dhillon HK, et al (1997) The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80:319–327PubMedGoogle Scholar
  53. 53.
    Polito C, La Manna A, Rambaldi PF, et al (2000) High incidence of a generally small kidney and primary vesicoureteral reflux. J Urol 164:479–482PubMedCrossRefGoogle Scholar
  54. 54.
    Risdon RA (1993) The small scarred kidney in childhood. Pediatr Nephrol 7:361–364PubMedCrossRefGoogle Scholar
  55. 55.
    Kavanagh EC, Ryan S, Awan A, et al (2005) Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol 35:275–281PubMedCrossRefGoogle Scholar
  56. 56.
    Lonergan GJ, Pennington DJ, Morrison JC, et al (1998) Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology 207:377–384PubMedGoogle Scholar
  57. 57.
    Weiser AC, Amukele SA, Leonidas JC, et al (2003) The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol 169:2308–2311PubMedCrossRefGoogle Scholar
  58. 58.
    Montet X, Ivancevic MK, Belenger J, et al (2003) Noninvasive measurement of absolute renal perfusion by contrast medium-enhanced magnetic resonance imaging. Invest Radiol 38:584–592PubMedCrossRefGoogle Scholar
  59. 59.
    Prasad PV, Chen Q, Goldfarb JW, et al (1997) Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 7:1163–1165PubMedCrossRefGoogle Scholar
  60. 60.
    Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275PubMedGoogle Scholar
  61. 61.
    Grenier N, Basseau F, Ries M, et al (2003) Functional MRI of the kidney. Abdom Imaging 28:164–175PubMedCrossRefGoogle Scholar
  62. 62.
    Ries M, Basseau F, Tyndal B, et al (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imag 17:104–113CrossRefGoogle Scholar
  63. 63.
    Muller MF, Prasad PV, Bimmler D, et al (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193:711–715PubMedGoogle Scholar
  64. 64.
    Yamada I, Aung W, Himeno Y, et al (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623PubMedGoogle Scholar
  65. 65.
    Ries M, Jones RA, Basseau F, et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imag 14:42–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of RadiologyChildren’s Healthcare of AtlantaAtlantaUSA
  2. 2.Department of RadiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations