Pediatric Cardiology

, Volume 39, Issue 6, pp 1242–1248 | Cite as

Cost-Effectiveness of Ventricular Assist Device Destination Therapy for Advanced Heart Failure in Duchenne Muscular Dystrophy

  • Defne A. Magnetta
  • JaHyun Kang
  • Peter D. Wearden
  • Kenneth J. Smith
  • Brian Feingold
Original Article


Destination ventricular assist device therapy (DT-VAD) is well accepted in select adults with medically refractory heart failure (HF) who are not transplant candidates; however, its use in younger patients with progressive diseases is unclear. We sought to evaluate the cost-effectiveness of DT-VAD in Duchenne muscular dystrophy (DMD) patients with advanced HF. We created a Markov-state transition model (5-year horizon) to compare survival, costs, and quality of life (QOL) between medical management and DT-VAD in DMD with advanced HF. Model input parameters were derived from the literature. We used sensitivity analyses to explore uncertainty around model assumptions. DT-VAD had higher costs ($435,602 vs. $125,696), survival (3.13 vs. 0.60 years), and quality-adjusted survival (1.99 vs. 0.26 years) than medical management. The incremental cost-effectiveness ratio (ICER) for DT-VAD was $179,086 per quality-adjusted life year (QALY). In sensitivity analyses that were widely varied to account for uncertainty in model assumptions, the DT-VAD strategy generally remained more costly and effective than medical management. Only when VAD implantation costs were <$113,142 did the DT-VAD strategy fall below the $100,000/QALY willingness-to-pay threshold commonly considered to be “cost-effective.” In this exploratory analysis, DT-VAD for patients with DMD and advanced HF exceeded societal expectations for cost-effectiveness but had an ICER similar to the accepted practice of DT-VAD in adult HF patients. While more experience and research in this population is needed, our analysis suggests that DT-VAD for advanced HF in DMD should not be dismissed solely based on cost.


Mechanical circulatory support Heart failure Cardiomyopathy Neuromuscular disease Quality of life Cost effectiveness 


Compliance with Ethical Standards

Conflict of interest

Defne Magnetta, JaHyun Kang, Peter Wearden, Kenneth Smith, and Brian Feingold declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K (2002) Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord NMD 12(10):926–929CrossRefPubMedGoogle Scholar
  2. 2.
    Passamano L, Taglia A, Palladino A, Viggiano E, D’Ambrosio P, Scutifero M et al (2012) Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol 31(2):121–125PubMedPubMedCentralGoogle Scholar
  3. 3.
    Nigro G, Comi LI, Politano L, Bain RJ (1990) The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26(3):271–277CrossRefPubMedGoogle Scholar
  4. 4.
    Kamdar F, Garry DJ (2016) Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol 67(21):2533–2546CrossRefPubMedGoogle Scholar
  5. 5.
    Mancini D, Lietz K (2010) Selection of cardiac transplantation candidates in 2010. Circulation 122(2):173–183CrossRefPubMedGoogle Scholar
  6. 6.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transpl 34(12):1495–1504CrossRefGoogle Scholar
  7. 7.
    Amodeo A, Adorisio R (2012) Left ventricular assist device in Duchenne cardiomyopathy: can we change the natural history of cardiac disease? Int J Cardiol 161(3):e43CrossRefPubMedGoogle Scholar
  8. 8.
    Ryan TD, Jefferies JL, Sawnani H, Wong BL, Gardner A, Del Corral M et al (2014) Implantation of the HeartMate II and HeartWare left ventricular assist devices in patients with duchenne muscular dystrophy: lessons learned from the first applications. ASAIO 60(2):246–248CrossRefGoogle Scholar
  9. 9.
    McNally EM, Kaltman JR, Benson DW, Canter CE, Cripe LH, Duan D et al (2015) Contemporary cardiac issues in duchenne muscular dystrophy. Circulation 131(18):1590–1598CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sonnenberg FA, Beck JR (1993) Markov models in medical decision making: a practical guide. Med Decis Mak 13(4):322–338CrossRefGoogle Scholar
  11. 11.
    Robinson R (1993) Cost-effectiveness analysis. BMJ 307(6907):793–795CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hirth RA, Chernew ME, Miller E, Fendrick AM, Weissert WG (2000) Willingness to pay for a quality-adjusted life year: in search of a standard. Med Decis Mak 20(3):332–342CrossRefGoogle Scholar
  13. 13.
    Mishra V, Fiane AE, Geiran O, Sørensen G, Khushi I, Hagen TP (2012) Hospital costs fell as numbers of LVADs were increasing: experiences from Oslo University Hospital. J Cardiothorac Surg 7:76CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Moreno SG, Novielli N, Cooper NJ (2012) Cost-effectiveness of the implantable HeartMate II left ventricular assist device for patients awaiting heart transplantation. J Heart Lung Transpl 31(5):450–458CrossRefGoogle Scholar
  15. 15.
    Neyt M, Van den Bruel A, Smit Y, De Jonge N, Erasmus M, Van Dijk D et al (2013) Cost-effectiveness of continuous-flow left ventricular assist devices. Int J Technol Assess Health Care 29(3):254–260CrossRefPubMedGoogle Scholar
  16. 16.
    Sharples LD, Dyer M, Cafferty F, Demiris N, Freeman C, Banner NR et al (2006) Cost-effectiveness of ventricular assist device use in the United Kingdom: results from the evaluation of ventricular assist device programme in the UK (EVAD-UK). J Heart Lung Transpl 25(11):1336–1343CrossRefGoogle Scholar
  17. 17.
    Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS (2012) Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circ Heart Fail 5(1):10–16CrossRefPubMedGoogle Scholar
  18. 18.
    Akhter SA, Badami A, Murray M, Kohmoto T, Lozonschi L, Osaki S et al (2015) Hospital readmissions after continuous-flow left ventricular assist device implantation: incidence, causes, and cost analysis. Ann Thorac Surg 100(3):884–889CrossRefPubMedGoogle Scholar
  19. 19.
    Chen S, Lin A, Liu E, Gowan M, May LJ, Doan LN et al (2015) Outpatient outcomes of pediatric patients with left ventricular assist devices. ASAIO J 6:163–168Google Scholar
  20. 20.
    Ouyang L, Grosse SD, Kenneson A (2008) Health care utilization and expenditures for children and young adults with muscular dystrophy in a privately insured population. J Child Neurol 23(8):883–888CrossRefPubMedGoogle Scholar
  21. 21.
    Russo MJ, Gelijns AC, Stevenson LW, Sampat B, Aaronson KD, Renlund DG et al (2008) The cost of medical management in advanced heart failure during the final two years of life. J Card Fail 14(8):651–658CrossRefPubMedGoogle Scholar
  22. 22.
    Cost To Charge Ratio High Values For FY (2016) [Internet]. Accessed 5 Jan 2017
  23. 23.
    CPI Inflation Calculator [Internet]. Accessed 5 Jan 2017
  24. 24.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443CrossRefPubMedGoogle Scholar
  25. 25.
    Göhler A, Geisler BP, Manne JM, Kosiborod M, Zhang Z, Weintraub WS et al (2009) Utility estimates for decision-analytic modeling in chronic heart failure–health states based on New York Heart Association classes and number of rehospitalizations. Value Health 12(1):185–187CrossRefPubMedGoogle Scholar
  26. 26.
    Uzark K, King E, Cripe L, Spicer R, Sage J, Kinnett K et al (2012) Health-related quality of life in children and adolescents with duchenne muscular dystrophy. Pediatrics 130(6):e1559–e1566CrossRefPubMedGoogle Scholar
  27. 27.
    Jakovljevic DG, McDiarmid A, Hallsworth K, Seferovic PM, Ninkovic VM, Parry G et al (2014) Effect of left ventricular assist device implantation and heart transplantation on habitual physical activity and quality of life. Am J Cardiol 114(1):88–93CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251CrossRefPubMedGoogle Scholar
  29. 29.
    Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD et al (2012) Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM modeling good research practices task force working group-6. Med Decis Mak 32(5):722–732CrossRefGoogle Scholar
  30. 30.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al (2014) Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transpl 33(6):555–564CrossRefGoogle Scholar
  31. 31.
    Deng MC, Young JB, Stevenson LW, Oz MC, Rose EA, Hunt SA et al (2003) Destination mechanical circulatory support: proposal for clinical standards. J Heart Lung Transpl 22(4):365–369CrossRefGoogle Scholar
  32. 32.
    Phurrough S, Salive M, Baldwin J, Ulrich M (2007) Decision memo for ventricular assist devices as destination therapy (CAG-00119R). Center for medicare and medicaid services. Accessed 25 Jun 2016
  33. 33.
    Kanters TA, Hoogenboom-Plug I, Rutten-Van Mölken MPMH, Redekop WK, van der Ploeg AT, Hakkaart L (2014) Cost-effectiveness of enzyme replacement therapy with alglucosidase alfa in classic-infantile patients with Pompe disease. Orphanet J Rare Dis 9:75CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van Dussen L, Biegstraaten M, Hollak CEM, Dijkgraaf MGW (2014) Cost-effectiveness of enzyme replacement therapy for type 1 Gaucher disease. Orphanet J Rare Dis 9:51CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Whiting P, Al M, Burgers L, Westwood M, Ryder S, Hoogendoorn M et al (2014) Ivacaftor for the treatment of patients with cystic fibrosis and the G551D mutation: a systematic review and cost-effectiveness analysis. Health Technol Assess Winch Engl 18(18):1–106Google Scholar
  36. 36.
    Grosse SD (2008) Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev Pharmacoecon Outcomes Res 8(2):165–178CrossRefPubMedGoogle Scholar
  37. 37.
    Hughes-Wilson W, Palma A, Schuurman A, Simoens S (2012) Paying for the orphan drug system: break or bend? Is it time for a new evaluation system for payers in Europe to take account of new rare disease treatments? Orphanet J Rare Dis 7(1):74CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Defne A. Magnetta
    • 1
  • JaHyun Kang
    • 2
    • 3
  • Peter D. Wearden
    • 4
  • Kenneth J. Smith
    • 5
  • Brian Feingold
    • 1
    • 6
  1. 1.PediatricsChildren’s Hospital of PittsburghPittsburghUSA
  2. 2.College of NursingSeoul National UniversitySeoulSouth Korea
  3. 3.Research Institute of Nursing ScienceSeoul National UniversitySeoulSouth Korea
  4. 4.Cardiothoracic SurgeryNemours Children’s HospitalOrlandoUSA
  5. 5.Section of Decision Sciences, Department of MedicineUniversity of PittsburghPittsburghUSA
  6. 6.Clinical and Translational ResearchUniversity of PittsburghPittsburghUSA

Personalised recommendations