Skip to main content

Advertisement

Log in

Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang W et al (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet C 163C(3):144–156

    Article  Google Scholar 

  2. Sedmera D et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337

    Article  PubMed  CAS  Google Scholar 

  3. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90(10):1044–1054

    Article  PubMed  CAS  Google Scholar 

  4. Kochilas LK et al (1999) Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(S5):635–642

    Article  PubMed  CAS  Google Scholar 

  5. Luxan G et al (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19(2):193–201

    Article  PubMed  CAS  Google Scholar 

  6. Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456

    Article  PubMed  Google Scholar 

  7. Nugent AW et al (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112(9):1332–1338

    Article  PubMed  Google Scholar 

  8. Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6(4):453–469

    Article  PubMed  Google Scholar 

  9. Finsterer J, Stollberger C, Towbin JA (2017) Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 14(4):224–237

    Article  PubMed  Google Scholar 

  10. Klaassen S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901

    Article  PubMed  CAS  Google Scholar 

  11. Chen R et al (2002) Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 77(4):319–325

    Article  PubMed  CAS  Google Scholar 

  12. Ichida F et al (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103(9):1256–1263

    Article  PubMed  CAS  Google Scholar 

  13. Hermida-Prieto M et al (2004) Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 94(1):50–54

    Article  PubMed  Google Scholar 

  14. Tian Y, Morrisey EE (2012) Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ Res 110(7):1023–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Stainier DY et al (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121(10):3141–3150

    PubMed  CAS  Google Scholar 

  16. Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66

    Article  PubMed  CAS  Google Scholar 

  17. Puri MC et al (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126(20):4569–4580

    PubMed  CAS  Google Scholar 

  18. Pennisi DJ, Ballard VL, Mikawa T (2003) Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 228(2):161–172

    Article  PubMed  CAS  Google Scholar 

  19. Manner J, Schlueter J, Brand T (2005) Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev Dyn 233(4):1454–1463

    Article  PubMed  Google Scholar 

  20. Dettman RW et al (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193(2):169–181

    Article  PubMed  CAS  Google Scholar 

  21. Gittenberger-de Groot AC et al (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82(10):1043–1052

    Article  PubMed  CAS  Google Scholar 

  22. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grego-Bessa J et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12(3):415–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lee KF et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398

    Article  PubMed  CAS  Google Scholar 

  25. Gassmann M et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378(6555):390–394

    Article  PubMed  CAS  Google Scholar 

  26. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378(6555):386–390

    Article  PubMed  CAS  Google Scholar 

  27. Chen H et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Yang J et al (2012) Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res 96(2):276–285

    Article  PubMed  CAS  Google Scholar 

  29. Chen H et al (2013) Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140(9):1946–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pashmforoush M et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386

    Article  PubMed  CAS  Google Scholar 

  31. Shou W et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492

    Article  PubMed  CAS  Google Scholar 

  32. Mysliwiec MR, Bresnick EH, Lee Y (2011) Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J Biol Chem 286(19):17193–17204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Solloway MJ, Harvey RP (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58(2):264–277

    Article  PubMed  CAS  Google Scholar 

  35. Zhou M et al (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4(2):201–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lavine KJ et al (2005) Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8(1):85–95

    Article  PubMed  CAS  Google Scholar 

  37. Lu SY et al (2008) FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 373(2):270–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang Y et al (2010) Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev 24(16):1746–1757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Merki E et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102(51):18455–18460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lavine KJ et al (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20(12):1651–1666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Branton H, Warren AE, Penney LS (2011) Left ventricular noncompaction and coronary artery fistula in an infant with deletion 22q11.2. Pediatr Cardiol 32(2):208–210

    Article  PubMed  Google Scholar 

  42. Lauer RM et al (1964) Angiographic demonstration of intramyocardial sinusoids in pulmonary-valve atresia with intact ventricular septum and hypoplastic right ventricle. N Engl J Med 271:68–72

    Article  PubMed  CAS  Google Scholar 

  43. Floria M, Tinica G, Grecu M (2014) Left ventricular non-compaction -challenges and controversies. Maedica (Buchar) 9(3):282–288

    Google Scholar 

  44. Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107(2):186–199

    Article  PubMed  CAS  Google Scholar 

  45. Liebner S et al (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hirschy A et al (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441

    Article  PubMed  CAS  Google Scholar 

  48. Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387(6630):292–295

    Article  PubMed  CAS  Google Scholar 

  49. Boutros M et al (1998) Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94(1):109–118

    Article  PubMed  CAS  Google Scholar 

  50. Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132(20):4421–4436

    Article  PubMed  CAS  Google Scholar 

  51. Phillips HM et al (2008) Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res 102(5):615–623

    Article  PubMed  CAS  Google Scholar 

  52. Phillips HM et al (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101(2):137–145

    Article  PubMed  CAS  Google Scholar 

  53. Murdoch JN et al (2003) Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12(2):87–98

    Article  PubMed  CAS  Google Scholar 

  54. Li D et al (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138(2):303–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Azhar M et al (2003) Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 14(5):391–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sanford LP et al (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659–2670

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Gaussin V et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99(5):2878–2883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang T et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444

    Article  PubMed  CAS  Google Scholar 

  59. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Investig Dermatol 118(2):211–215

    Article  PubMed  CAS  Google Scholar 

  60. Lockhart M et al (2011) Extracellular matrix and heart development. Birth Defects Res A 91(6):535–550

    Article  CAS  Google Scholar 

  61. Stanton H et al (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 1812(12):1616–1629

    Article  PubMed  CAS  Google Scholar 

  62. Camenisch TD et al (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Investig 106(3):349–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cooley MA et al (2012) Fibulin-1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation. Dev Dyn 241(2):303–314

    Article  PubMed  CAS  Google Scholar 

  64. Hatano S et al (2012) Versican/PG-M is essential for ventricular septal formation subsequent to cardiac atrioventricular cushion development. Glycobiology 22(9):1268–1277

    Article  PubMed  CAS  Google Scholar 

  65. Stankunas K et al (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14(2):298–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kern CB et al (2010) Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol 29(4):304–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhou Z et al (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32(2):168–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lin W et al (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Investig 128(2):826–833

    Article  PubMed  PubMed Central  Google Scholar 

  69. Roohani N et al (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  70. Walsh CT et al (1994) Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102(Suppl 2):5–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(2):679S-84S

    Article  PubMed  Google Scholar 

  72. Andreini C et al (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201

    Article  PubMed  CAS  Google Scholar 

  73. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46

    Article  PubMed  CAS  Google Scholar 

  74. Shils ME, Shike M (2006) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  75. Fukada T et al (2011) Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 16(7):1123–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763(7):711–722

    Article  PubMed  CAS  Google Scholar 

  77. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5S Suppl):1360S–1366S

    Google Scholar 

  78. Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17(3):336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  80. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674

    Article  PubMed  CAS  Google Scholar 

  81. Van Wouwe JP (1989) Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr 149(1):2–8

    Article  PubMed  Google Scholar 

  82. Hambidge M (2000) Human zinc deficiency. J Nutr 130(5S Suppl):1344S–1349S

    Google Scholar 

  83. Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B 89(4):313–325

    Article  CAS  Google Scholar 

  84. Lopez V, Keen CL, Lanoue L (2008) Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model. Biol Trace Elem Res 122(3):238–255

    Article  PubMed  CAS  Google Scholar 

  85. Pfeiffer CC, Braverman ER (1982) Zinc, the brain and behavior. Biol Psychiatry 17(4):513–532

    PubMed  CAS  Google Scholar 

  86. Duffy JY et al (2004) Cardiac abnormalities induced by zinc deficiency are associated with alterations in the expression of genes regulated by the zinc-finger transcription factor GATA-4. Birth Defects Res B 71(2):102–109

    Article  CAS  Google Scholar 

  87. Reamon-Buettner SM, Borlak J (2005) GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart. J Med Genet 42(5):e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Molkentin JD et al (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072

    Article  PubMed  CAS  Google Scholar 

  89. Kuo CT et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11(8):1048–1060

    Article  PubMed  CAS  Google Scholar 

  90. Gajecka M, Mackay KL, Shaffer LG (2007) Monosomy 1p36 deletion syndrome. Am J Med Genet C 145C(4):346–356

    Article  Google Scholar 

  91. Christine KS, Conlon FL (2008) Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell 14(4):616–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Charpentier MS et al (2013) CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev Cell 25(2):132–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vacalla CM, Theil T (2002) Cst, a novel mouse gene related to Drosophila Castor, exhibits dynamic expression patterns during neurogenesis and heart development. Mech Dev 118(1–2):265–268

    Article  PubMed  CAS  Google Scholar 

  94. Liu Z et al (2006) Molecular cloning and characterization of human Castor, a novel human gene upregulated during cell differentiation. Biochem Biophys Res Commun 344(3):834–844

    Article  PubMed  CAS  Google Scholar 

  95. Liu Z et al (2014) Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 289(43):29801–29816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Dorr KM et al (2015) Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development 142(11):2037–2047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kim JH et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743

    Article  PubMed  CAS  Google Scholar 

  98. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99(8):1515–1522

    Article  PubMed  CAS  Google Scholar 

  99. Fukada T et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS ONE 3(11):e3642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Chai J et al (2003) Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem 278(22):20327–20331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Nicholas Hand (University of Pennsylvania) for critical reading and insightful feedback in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Li.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Li, D. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development. Pediatr Cardiol 39, 1042–1051 (2018). https://doi.org/10.1007/s00246-018-1859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-1859-y

Keywords

Navigation