Pediatric Cardiology

, Volume 39, Issue 4, pp 763–773 | Cite as

Inefficient Ventriculoarterial Coupling in Fontan Patients: A Cardiac Magnetic Resonance Study

  • Max E. Godfrey
  • Rahul H. Rathod
  • Ellen Keenan
  • Kimberlee Gauvreau
  • Andrew J. Powell
  • Tal Geva
  • Ashwin Prakash
Original Article


The ventriculoarterial coupling (VAC) ratio, the ratio of arterial elastance (Ea) to ventricular end-systolic elastance (Ees), reflects cardiovascular efficiency. Little is known about this ratio in patients who have undergone the Fontan procedure. Our aim was to assess the VAC ratio in a cohort of Fontan patients using a cardiac magnetic resonance (CMR) method, and to examine its relation to outcomes. We retrospectively assessed VAC from CMR data on 195 Fontan patients (age 19.6 ± 10.7 years) and 42 controls (age 15.2 ± 2.2 years). The VAC ratio was calculated as Ea/Ees (Ea = mean arterial blood pressure (MBP)/ventricular stroke volume; Ees = MBP/end-systolic volume). Compared with controls, Fontan patients had lower body surface area-adjusted median Ees (1.54 vs. 2.4, p < 0.001) and Ea (1.35 vs. 1.48, p = 0.01), and a higher median VAC ratio (0.88 vs. 0.62, p < 0.001). After a median follow-up of 4 years (range 1–10), 20 patients reached a composite endpoint of death or heart transplant listing. On multivariable modeling, being in the lowest tertile of the VAC ratio was independently associated with the composite endpoint (odds ratio 11.39, p = 0.02), and inclusion of the VAC ratio in the model improved prediction compared to traditional risk factors. In patients without ventricular dilation, the VAC ratio was the only factor predictive of the composite endpoint (p = 0.02). In conclusion, we found evidence for inefficient ventriculoarterial coupling in Fontan patients. The VAC ratio improved prediction of outcomes and was especially useful in patients without ventricular dilation. Further investigation into the clinical significance of ventriculoarterial coupling in this patient population is warranted.


Single ventricle Fontan Cardiac magnetic resonance Pathophysiology Prognosis 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.


  1. 1.
    Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, Gersony WM, Gallagher D, Geva T, Margossian R, McCrindle BW, Paridon S, Schwartz M, Stylianou M, Williams RV, Clark BJ, 3rd (2008) Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol 52:85–98CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    d’Udekem Y, Iyengar AJ, Galati JC, Forsdick V, Weintraub RG, Wheaton GR, Bullock A, Justo RN, Grigg LE, Sholler GF, Hope S, Radford DJ, Gentles TL, Celermajer DS, Winlaw DS (2014) Redefining expectations of long-term survival after the Fontan procedure: twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation 130:S32–S38CrossRefPubMedGoogle Scholar
  3. 3.
    Khairy P, Fernandes SM, Mayer JE Jr, Triedman JK, Walsh EP, Lock JE, Landzberg MJ (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92CrossRefPubMedGoogle Scholar
  4. 4.
    Rathod RH, Prakash A, Powell AJ, Geva T (2010) Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol 55:1721–1728CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rathod RH, Prakash A, Kim YY, Germanakis IE, Powell AJ, Gauvreau K, Geva T (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging 7:502–509CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780PubMedGoogle Scholar
  7. 7.
    Kass DA, Kelly RP (1992) Ventriculo-arterial coupling: concepts, assumptions, and applications. Ann Biomed Eng 20:41–62CrossRefPubMedGoogle Scholar
  8. 8.
    Chirinos JA (2013) Ventricular-arterial coupling: invasive and non-invasive assessment. Art Res 7:2–14Google Scholar
  9. 9.
    Chirinos JA, Rietzschel ER, De Buyzere ML, De Bacquer D, Gillebert TC, Gupta AK, Segers P (2009) Arterial load and ventricular-arterial coupling: physiologic relations with body size and effect of obesity. Hypertension 54:558–566CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262CrossRefPubMedGoogle Scholar
  11. 11.
    Sanz J, Garcia-Alvarez A, Fernandez-Friera L, Nair A, Mirelis JG, Sawit ST, Pinney S, Fuster V (2012) Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart 98:238–243CrossRefPubMedGoogle Scholar
  12. 12.
    Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, Kawaguchi M, Kass DA (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034CrossRefPubMedGoogle Scholar
  13. 13.
    Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. BioMed Res Int 2013:235194CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    ten Brinke EA, Klautz RJ, Verwey HF, van der Wall EE, Dion RA, Steendijk P (2010) Single-beat estimation of the left ventricular end-systolic pressure-volume relationship in patients with heart failure. Acta Physiol 198:37–46CrossRefGoogle Scholar
  15. 15.
    Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 94:2497–2506CrossRefPubMedGoogle Scholar
  16. 16.
    Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates. Circulation 103:2176–2180CrossRefPubMedGoogle Scholar
  17. 17.
    Kass DA (2005) Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 46:185–193CrossRefPubMedGoogle Scholar
  18. 18.
    Starling MR (1993) Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 125:1659–1666CrossRefPubMedGoogle Scholar
  19. 19.
    Chantler PD, Lakatta EG, Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 105:1342–1351CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Milnor WR (1975) Arterial impedance as ventricular afterload. Circ Res 36:565–570CrossRefPubMedGoogle Scholar
  21. 21.
    O’Rourke MF (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol 23:139–149CrossRefPubMedGoogle Scholar
  22. 22.
    Karr SS, Martin GR (1994) A simplified method for calculating wall stress in infants and children. J Am Soc Echocardiogr 7:646–651CrossRefPubMedGoogle Scholar
  23. 23.
    Rowland DG, Gutgesell HP (1994) Use of mean arterial pressure for noninvasive determination of left ventricular end-systolic wall stress in infants and children. Am J Cardiol 74:98–99CrossRefPubMedGoogle Scholar
  24. 24.
    Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40:748–753CrossRefPubMedGoogle Scholar
  25. 25.
    Chantler PD, Lakatta EG, Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. Journal Appl Physiol 105:1342–1351CrossRefGoogle Scholar
  26. 26.
    Truong U, Patel S, Kheyfets V, Dunning J, Fonseca B, Barker AJ, Ivy D, Shandas R, Hunter K (2015) Non-invasive determination by cardiovascular magnetic resonance of right ventricular-vascular coupling in children and adolescents with pulmonary hypertension. J Cardiovasc Magn Reson 17:81CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Prakash A, Rathod RH, Powell AJ, McElhinney DB, Banka P, Geva T (2012) Relation of systemic-to-pulmonary artery collateral flow in single ventricle physiology to palliative stage and clinical status. Am J Cardiol 109:1038–1045CrossRefPubMedGoogle Scholar
  28. 28.
    Prakash A, Powell AJ, Krishnamurthy R, Geva T (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93:657–661CrossRefPubMedGoogle Scholar
  29. 29.
    Rathod RH, Prakash A, Powell AJ, Geva T (2009) Myocardial fibrosis identified by cardiac magnetic resonance delayed enhancement is associated with ventricular dysfunction and nonsustained ventricular tachycardia after Fontan operation. J Am Coll Cardiol 53:A356Google Scholar
  30. 30.
    Burkhoff D (1990) The conductance method of left ventricular volume estimation. Methodologic limitations put into perspective. Circulation 81:703–706CrossRefPubMedGoogle Scholar
  31. 31.
    Blalock SE, Banka P, Geva T, Powell AJ, Zhou J, Prakash A (2013) Interstudy variability in cardiac magnetic resonance imaging measurements of ventricular volume, mass, and ejection fraction in repaired tetralogy of Fallot: a prospective observational study. J Magn Reson Imaging 38:829–835CrossRefPubMedGoogle Scholar
  32. 32.
    Saiki H, Eidem BW, Ohtani T, Grogan MA, Redfield MM (2016) Ventricular-Arterial function and coupling in the adult Fontan circulation. J Am Heart Assoc 5:e003887CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Williams RV, Margossian R, Lu M, Atz AM, Bradley TJ, Jay Campbell M, Colan SD, Gallagher D, Lai WW, Pearson GD, Prakash A, Shirali G, Cohen MS, Pediatric Heart Network I (2013) Factors impacting echocardiographic imaging after the Fontan procedure: a report from the pediatric heart network Fontan cross-sectional study. Echocardiography 30:1098–1106PubMedPubMedCentralGoogle Scholar
  34. 34.
    Margossian R, Schwartz ML, Prakash A, Wruck L, Colan SD, Atz AM, Bradley TJ, Fogel MA, Hurwitz LM, Marcus E, Powell AJ, Printz BF, Puchalski MD, Rychik J, Shirali G, Williams R, Yoo SJ, Geva T, Pediatric Heart Network I (2009) Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol 104:419–428CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tanoue Y, Sese A, Imoto Y, Joh K (2003) Ventricular mechanics in the bidirectional Glenn procedure and total cavopulmonary connection. Ann Thorac Surg 76:562–566CrossRefPubMedGoogle Scholar
  36. 36.
    Atz AM, Zak V, Mahony L, Uzark K, Shrader P, Gallagher D, Paridon SM, Williams RV, Breitbart RE, Colan SD, Kaltman JR, Margossian R, Pasquali SK, Allen K, Lai WW, Korsin R, Marino BS, Mirarchi N, McCrindle BW (2014) Survival data and predictors of functional outcome an average of 15 years after the Fontan procedure: the pediatric heart network Fontan cohort. Congenit Heart Dis 10:E30CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720CrossRefPubMedGoogle Scholar
  38. 38.
    Maurer MS, King DL, El-Khoury Rumbarger L, Packer M, Burkhoff D (2005) Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail 11:177–187CrossRefPubMedGoogle Scholar
  39. 39.
    Garofalo CA, Cabreriza SE, Quinn TA, Weinberg AD, Printz BF, Hsu DT, Quaegebeur JM, Mosca RS, Spotnitz HM (2006) Ventricular diastolic stiffness predicts perioperative morbidity and duration of pleural effusions after the Fontan operation. Circulation 114:I56–I61CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Max E. Godfrey
    • 1
    • 2
  • Rahul H. Rathod
    • 1
    • 2
  • Ellen Keenan
    • 1
    • 2
  • Kimberlee Gauvreau
    • 1
    • 2
  • Andrew J. Powell
    • 1
    • 2
  • Tal Geva
    • 1
    • 2
  • Ashwin Prakash
    • 1
    • 2
  1. 1.Department of CardiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations