Pediatric Cardiology

, Volume 39, Issue 4, pp 718–725 | Cite as

Sensitive Cardiac Troponins: Could They Be New Biomarkers in Pediatric Pulmonary Hypertension Due to Congenital Heart Disease?

  • Seyma Kayali
  • Ilker Ertugrul
  • Tamer Yoldas
  • Ozkan Kaya
  • Senem Ozgür
  • Utku A. Orün
  • Selmin Karademir
Original Article


To analyze the role of sensitive cardiac troponin I (scTnI) and high-sensitive troponin T (hscTnT) in the determination of myocardial injury caused by volume and pressure load due to pulmonary hypertension (PH) and to investigate if these markers may be useful in the management of PH in childhood. Twenty-eight patients with congenital heart disease (CHD) with left to right shunt and PH, 29 patients with CHD with left to right shunt but without PH, and 18 healthy children, in total 75 individuals, were included in the study. All cases were aged between 4 and 36 months. Echocardiographic evaluation was performed in all cases, and invasive hemodynamic investigation was performed in 33 cases. Blood samples were obtained from all cases, for the measurement of brain natriuretic peptide (BNP), pro-brain natriuretic peptide (pro-BNP), sensitive cardiac troponin I (scTnI), and high-sensitive troponin T (hscTnT) levels. The mean BNP, pro-BNP, scTnI, and hsTnT levels were statistically significantly higher in patients with PH than in the patients without PH (p < 0.001). A statistically significant positive correlation was determined between pulmonary artery systolic pressure and scTnI and hscTnT levels (r = 0.34 p = 0.01, r = 0.46 p < 0.001, respectively) levels. Pulmonary hypertension determined in congenital heart diseases triggers myocardial damage independently of increased volume or pressure load and resistance, occurring by disrupting the perfusion via increasing ventricular wall tension and the myocardial oxygen requirement. Serum scTnI and hscTnT levels may be helpful markers to determine the damage associated with PH in childhood.


Congenital heart disease Pulmonary hypertension Myocardial injury Sensitive cardiac troponins 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interest.


  1. 1.
    Olguntürk R (2010) Pediatric pulmonary hypertension and pulmonary arterial hypertension secondary to congenital heart diseases. Anadol Kardiyol Derg 10:50–56CrossRefGoogle Scholar
  2. 2.
    Lammers AE, Apitz C, Zartner P, Hager A, Dubowy KO, Hansmann G (2016) Diagnostics, monitoring and outpatient care in children with suspected pulmonary hypertension/paediatric pulmonary hypertensive vascular disease. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102:1–13CrossRefGoogle Scholar
  3. 3.
    Haworth SG (2006) The management of children with congenital heart disease. Pulmonary Arterial Hypertension Related to Congenital Heart Disease 1st ed. LondonGoogle Scholar
  4. 4.
    Joshi R, Kalra R, Kumar N, Aggarwal N (2016) Critical decision of operability in congenital heart disease patient with severe pulmonary hypertension. Ann Card Anaesth 19:744CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Apitz C, Hansmann G, Schranz D (2016) Hemodynamic assessment and acute pulmonary vasoreactivity testing in the evaluation of children with pulmonary vascular disease. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102:23–29CrossRefGoogle Scholar
  6. 6.
    Hoeper MM, Lee SH, Voswinckel R, Palazzini M, Jais X, Marinelli A (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48:2546–2552CrossRefPubMedGoogle Scholar
  7. 7.
    Pattathu J, Gorenflo M, Hilgendorff A, Koskenvuo JW, Apitz C, Hansmann G, Alastalo TP (2016) Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102:36–41CrossRefGoogle Scholar
  8. 8.
    Pezzuto B, Badagliacca R, Poscia R, Ghio S, D’Alto M, Vitulo P, Mulè M, Albera C, Volterrani M, Fedele F, Vizza CD (2015 Mar) Circulating biomarkers in pulmonary arterial hypertension: update and future direction. J Heart Lung Transplant 34:282–305CrossRefPubMedGoogle Scholar
  9. 9.
    Yilmaz MB, Zorlu A, Dogan OT, Karahan O, Tandogan I, Akkurt I (2011) Role of CA-125 in identification of right ventricular failure in chronic obstructive pulmonary disease. Clin Cardiol 34:244–248CrossRefPubMedGoogle Scholar
  10. 10.
    Oguz MM, Oguz AD, Sanli C, Cevik A (2014) Serum levels of soluble ICAM-1 in children with pulmonary artery hypertension. Tex Heart Inst J 4:159–164CrossRefGoogle Scholar
  11. 11.
    Yıldırım A, Güzelmeriç F, Öner CN, Karaağaç AT, Şaşmazel A, Erdem H, Özdemir O, Baysal A (2014) Prognostic significance of sICAM-1 and sVCAM-1 molecules for cardiac surgery in pediatric patients with pulmonary hypertension. Anadolu Kardiyol Derg 14:274–279PubMedGoogle Scholar
  12. 12.
    Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, Plein S, Mueller C, Haaf P (2017) Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med 12:147–155CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hafez MO, Morsy SM, Mahfoz RA, Ali AR (2015) Myocardial injury in children with unoperated congenital heart diseases. Cardiol Res Pract. PubMedPubMedCentralGoogle Scholar
  14. 14.
    Torbicki A, Kurzyna M, Kuca P, Fijałkowska A, Sikora J, Florczyk M et al (2003) Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 108:844–848CrossRefPubMedGoogle Scholar
  15. 15.
    Antman EM (2002) Decision making with cardiac troponin tests. N Engl J Med 346:2079–2082CrossRefPubMedGoogle Scholar
  16. 16.
    Mair J (2014) High-sensitivity cardiac troponins in everyday clinical practice. World J Cardiol 6:175–182CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kunii Y, Kamada M, Ohtsuki S, Araki T, Kataoka K, Kageyama M et al (2003) Plasma brain natriuretic peptide and the evaluation of volume overload in infants and children with congenital heart disease. Acta Med Okayama 57(4):191–197PubMedGoogle Scholar
  18. 18.
    Bader D, Kugelman A, Lanir A, Tamir A, Mula E, Riskin A (2006) Cardiac troponin I serum concentrations in newborns: a study and review of literature. Clin Chin Acta 371(1–2):61–65CrossRefGoogle Scholar
  19. 19.
    Bossone E, D’Andrea A, D’Alto M, Citro R, Argiento P, Ferrara F et al (2013) Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr 26:1–14CrossRefPubMedGoogle Scholar
  20. 20.
    Apple FS, Wu AHB, Jaffe AS (2002) European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 144:981–986CrossRefPubMedGoogle Scholar
  21. 21.
    Apple FS, Wu AHB (2001) Myocardial infarction redefined: role of cardiac troponin testing. Clin Chem 47:377–379PubMedGoogle Scholar
  22. 22.
    Antman EM, Tanasijevic MJ, Thompson B et al (1996) Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Eng J Med 335:1342–1349CrossRefGoogle Scholar
  23. 23.
    Venge P, Langerquist B, Diderholm E et al (2002) On behalf of the FRISC II Study Group. Clinical Performance of three cardiac troponin assays in patients with unstable coronary artery disease (FRISC II substudy). Am J Cardiol 89:1035–1041CrossRefPubMedGoogle Scholar
  24. 24.
    Özhan H, Albayrak S, Uzun H,et al (2007) Correlation of plasma B Type natriuretic peptide with shunt severity in patients with atrial or ventricular septal defect. Pediatr Cardiol 28:272–275CrossRefPubMedGoogle Scholar
  25. 25.
    Holmström H, Hall C, Thaulow E (2001) Plasma levels of natriuretic peptides and hemodynamic assessment of patent ductus arteriosus in preterm infants. Acta Paediatr 90:184–191CrossRefPubMedGoogle Scholar
  26. 26.
    Leuchte HH, Holzapfel M, Baumgartner RA et al (2005) Characterization of brain natriuretic peptide in long-term follow-up of pulmonary arterial hypertension. Chest 128:2368–2374CrossRefPubMedGoogle Scholar
  27. 27.
    Fijalkowska A, Kurzyna M, Torbicki A et al (2006) Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 129:1313–1321CrossRefPubMedGoogle Scholar
  28. 28.
    Conen D, Pfisterer M, Martina B (2006) Substantial intraindividual variability of BNP concentrations in patients with hypertension. J Hum Hypertens 20:387–391CrossRefPubMedGoogle Scholar
  29. 29.
    Takatsuki S, Wagner BD, Ivy D (2012) B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide in pediatric patients with pulmonary arterial hypertension. Congenit Heart Dis 7(3):259–267CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bernus A, Wagner BD, Accurso F et al. (2009) Brain natriuretic peptide levels in managing pediatric patients with pulmonary arterial hypertension. Chest 135(3):745–751CrossRefPubMedGoogle Scholar
  31. 31.
    Galie N, Manes A, Palazzini M et al (2008) Management of pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger’s syndrome. Drugs 68:1049–1066CrossRefPubMedGoogle Scholar
  32. 32.
    Kubo T, Kitaoka H, Okawa M et al (2010) Serum cardiac troponin I is related to increased left ventricular wall thickness, left ventricular dysfunction, and male gender in hypertrophic cardiomyopathy. Clin Cardiol 33:E1–E7CrossRefPubMedGoogle Scholar
  33. 33.
    Petersen SE, Jerosch-Herold M, Hudsmith LE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425CrossRefPubMedGoogle Scholar
  34. 34.
    Galderisi M (2007) Epicardial coronary vessels and coronary microcirculation in pressure overload hypertrophy: a complex interaction. Am J Hypertens 20:285–286.CrossRefPubMedGoogle Scholar
  35. 35.
    Apple FS (2009) A new season for cardiac troponin assays: it’s time to keep a scorecard. Clin Chem 55:7 1303–1306PubMedGoogle Scholar
  36. 36.
    Xu RY, Zhu XF, Yang Y, Ye P (2013) High-sensitive cardiac troponin T. J Geriatr Cardiol 10:102–109PubMedPubMedCentralGoogle Scholar
  37. 37.
    Colvin KL, Dufva MJ, Delaney RP, Ivy DD, Stenmark KR, Yeager M (2014) Biomarkers for pediatric pulmonary arterial hypertension—a call to collaborate. Front Pediatr 2:1–12CrossRefGoogle Scholar
  38. 38.
    Zelniker T, Uhlmann L, Spaich S, Friedrich J, Preusch MR, Meyer FJ et al. (2015) Novel biomarkers for risk stratification in pulmonary arterial hypertension. ERJ Open Res 1:00008-2015CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eggers KM, Lindahl B (2017) Application of cardiac troponin in cardiovascular diseases other than acute coronary syndrome. Clin Chem 63:223–235CrossRefPubMedGoogle Scholar
  40. 40.
    Sugimoto M, Ota K, Kajihama A, Nakau K et al (2011) Volume overload and pressure overload due to left-to-right shunt- induced myocardial injury: evaluation using a highly sensitive cardiac troponin I assay in children with congenital heart disease. Circ J 75:2213–2219CrossRefPubMedGoogle Scholar
  41. 41.
    Eerola A, Jokinen EO, Savukoski TI et al (2013) Cardiac troponin I in congenital heart defects with pressure or volume overload. Scand Cardiovasc J 47:154–159CrossRefPubMedGoogle Scholar
  42. 42.
    Filusch A, Giannitsis E, Katus HA, Meyer FJ (2010) High-sensitive troponin T: a novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension. Clin Sci 119:207–213CrossRefPubMedGoogle Scholar
  43. 43.
    Apple FS (1999) Clinical and analytical standardization ıssues confronting cardiac troponin I. Clin Chem 45(1):18–20PubMedGoogle Scholar
  44. 44.
    Labugger R, Organ L, Collier C et al (2000) Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 102:1221–1226CrossRefPubMedGoogle Scholar
  45. 45.
    Tate JR, Heathcote D, Rayfield J, Hickman PE (1999) The lack of standardization of cardiac troponin I assay systems. Clin Chim Acta 284:141–149CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Seyma Kayali
    • 1
  • Ilker Ertugrul
    • 2
  • Tamer Yoldas
    • 3
  • Ozkan Kaya
    • 3
  • Senem Ozgür
    • 3
  • Utku A. Orün
    • 3
  • Selmin Karademir
    • 3
  1. 1.Pediatric Cardiology DepartmentKeçiören Training and Research HospitalKeçiören/AnkaraTurkey
  2. 2.Pediatric Cardiology Department, Medical FacultyHacettepe UnivercityAnkaraTurkey
  3. 3.Pediatric Cardiology DepartmentDr. Sami Ulus Maternity and Children Training and Research HospitalAnkaraTurkey

Personalised recommendations