Stability in Thermoviscoelasticity with Second Sound

  • G. Gómez Ávalos
  • J. Muñoz Rivera
  • O. Vera Villagran


Here we consider a string composed by three different materials: thermo elastic, viscoelastic and elastic. Our main result is that the exponential stability depends on the position of each material. That is, we prove that the model is exponentially stable if and only if the viscoelastic material is not in the center of the string. Otherwise, there is not exponential stability and the corresponding semigroup also goes to zero, but now polynomially.


\(C_{0}\)-semigroup Exponential stability Thermo-viscoelasticity Viscoelasticity Kelvin-Voigt damping Stability of semigroups 



The authors thanks the research project of the Bio-Bio University: GI 171608/VC. Gerardo Gómez was supported by CONICYT-PCHA/doctorado nacional/2016-21160921.


  1. 1.
    Alves, M., Muñoz Rivera, J., Sepúlveda, M., Vera, O., Zegarra, M.: The asymtotic behavior of the linear transmission problem in viscoelasticity. Math. Nachr. 287(56), 483–497 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev 39(3), 355–376 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev 51(12), 705–729 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen, G., Fulling, S.A., Narcowich, F.J., Sun, S.: Exponential decay of the energy of evolution equation with locally distributed damping. SIAM J. Appl. Math. 51, 266–301 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jiang, S., Racke, R.: Evolution Equations in Thermoelasticity. Monographs and Surveys in Pure and Applied Mathematics, p. 112. Chapman and Hall/CRC, Boca Raton (2000)Google Scholar
  7. 7.
    Liu , Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Notes in Mathematics, vol. 398. Chapman and Hall/CRC Press, London (1999)Google Scholar
  8. 8.
    Liu, K., Liu, Z.: Exponential decay of energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J. Control Optim. 36(3), 1086–1098 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, W., Williams, G.: Exponential stability of the problem of transmission of the wave equation. Bull. Aust. Math Soc. 57, 630–644 (1998)MathSciNetGoogle Scholar
  10. 10.
    Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Prüss, Jan: On the spectrum of \(C_0\)-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)CrossRefzbMATHGoogle Scholar
  12. 12.
    Racke, R.: Thermoelasticity with second sound, exponential stability in linear and non-linear 1-d. Math. Meth. Appl. Sci. 25, 409–441 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. Gómez Ávalos
    • 1
  • J. Muñoz Rivera
    • 1
  • O. Vera Villagran
    • 1
  1. 1.DM. Universidad del Bío BíoConcepciónChile

Personalised recommendations