Advertisement

Shape Sensitivity Analysis for a Viscous Flow with Navier Boundary Condition

  • Chaima Bsaies
  • Raja Dziri
Article

Abstract

The shape derivability analysis of the flow of a viscous and incompressible fluid surrounding a rigid body B is considered. The novelty being in the choice of the boundary condition on the body B where we impose the so-called Navier boundary condition. Well-posedness of the time-dependent Navier–Stokes equations with mixed boundary conditions, of Navier and Dirichlet type, is established under regularity and smallness assumptions. After proving the shape differentiability of the state system, we compute the first order necessary optimality condition associated to drag shape minimization problem.

Keywords

Shape optimization Navier–Stokes equations Navier boundary conditions 

Mathematical Subject Classification

76D05 49K20 

References

  1. 1.
    Bello, J.A., Fernández-Cara, E., Simon, J.: The variation of the drag with respect to the domain in Navier–Stokes flow. In: Optimization, Optimal Control and Partial Differential Equations, pp. 287–296. Springer, Basel (1992)Google Scholar
  2. 2.
    Bello, J.A., Fernández-Cara, E., Lemoine, J., Simon, J.: The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier–Stokes flow. SIAM J. Control Optim. 35(2), 626–640 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boisgérault, S., Zolésio, J.-P.: Shape derivative of sharp functionals governed by Navier–Stokes flow. In: Jäger, W., Necas, J., John, O., Najzar, K., Stará, J. (eds.), Partial Differential Equations: Theory and Numerical Solution, pp. 49–63. (1999). https://www.researchgate.net/publication/265541111
  4. 4.
    Ciarlet, P.G.: Three-Dimensional Elasticity, vol. 20. Elsevier, Amsterdam (1988)zbMATHGoogle Scholar
  5. 5.
    Delfour, M.C., Zolésio, J.-P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123(1), 1–16 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Advances in Design and Control, vol. 4. SIAM, Philadelphia (2001)Google Scholar
  7. 7.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. grundlehren der mathematischen wissenschaften, vol 219. Springer, Berlin (1976)Google Scholar
  8. 8.
    Dziri, R.: Problèmes de frontière libre en fluides visqueux. PhD Thesis, Ecole des Mines de Paris (1995)Google Scholar
  9. 9.
    Gao, Z., Ma, Y., Zhuang, H.: Optimal shape design for the time-dependent Navier–Stokes flow. Int. J. Numer. Methods Fluids 57(10), 1505–1526 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gérard-Varet, D.: The Navier wall law at a boundary with random roughness. Commun. Math. Phys. 286(1), 81–110 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harbrecht, H., Tausch, J.: On the numerical solution of a shape optimization problem for the heat equation. SIAM J. Sci. Comput. 35(1), A104–A121 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Henrot, A., Pierre, M.: Variation et optimisation de formes: une analyse géométrique, vol. 48. Springer, Berlin (2006)zbMATHGoogle Scholar
  13. 13.
    Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  15. 15.
    Navier, P.M.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr. 6, 389–416 (1823)Google Scholar
  16. 16.
    Rejaiba, A.: Équations de Stokes et de Navier–Stokes avec des conditions aux limites de Navier. PhD Thesis, Université de Pau (2004)Google Scholar
  17. 17.
    Simon, J.: Domain variation for drag in Stokes flow. In: Control Theory of Distributed Parameter Systems and Applications, pp. 28–42. Springer, Berlin (1991)Google Scholar
  18. 18.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. SCM 16. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Temam, R.: Theory and Numerical Analysis of the Navier–Stokes Equations. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  20. 20.
    Zolésio, J.-P.: Identification de domaines par déformations. thèse d’état, univ (1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical, Physical and Natural Sciences of TunisTunis-El Manar UniversityTunisTunisia

Personalised recommendations