Applied Mathematics & Optimization

, Volume 75, Issue 2, pp 253–283 | Cite as

Approximate Controllability for a Semilinear Stochastic Evolution System with Infinite Delay in \(L_p\) Space

  • Fatima Zahra Mokkedem
  • Xianlong Fu


In this paper, approximate controllability for a class of infinite-delayed semilinear stochastic systems in \(L_p\) space (\(2<p<\infty \)) is studied. The fundamental solution’s theory is used to describe the mild solution which is obtained by using the Banach fixed point theorem. In this way the approximate controllability result is then obtained by assuming that the corresponding deterministic linear system is approximately controllable via the so-called the resolvent condition. An application to a Volterra stochastic equation is also provided to illustrate the obtained results.


Stochastic evolution system Approximate controllability Fundamental solution Resolvent condition  Infinite delay 

Mathematics Subject Classification

34K30 34K35 35R10 60G99 93C10 



This work is supported by NSF of China (Nos. 11171110 and 11371087), Science and Technology Commission of Shanghai Municipality (STCSM, grant No. 13dz2260400) and Shanghai Leading Academic Discipline Project (No. B407).


  1. 1.
    Bao, H., Jiang, D.: The Banach spaces \(C_h^p\) and \(L^p(\Omega, C_h^p)\) with application to the approximate controllability of stochastic partial functional differential equations with infinite delay. Stoch. Anal. Appl. 25, 995–1024 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bashirov, A.E., Mahmudov, N.I.: On concepts of controllability for linear deterministic and stochastic systems. SIAM J. Control Optim. 37, 1808–1821 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bezandry, P., Diagana, T.: Square-mean almost periodic solutions to some classes of nonautonomous stochastic evolution equations with finite delay. J. Appl. Funct. Anal. 7, 345–366 (2012)MathSciNetMATHGoogle Scholar
  4. 4.
    Chang, Y.K.: Controllability of impulsive functional differential systems with infinite delay in Banach space. Chaos Solitons Fractals 33, 1601–1609 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cui, J., Yan, L.: Successive approximation of neutral stochastic evolution equations with infinite delay and Poisson jumps. Appl. Math. Comput. 218, 6776–6784 (2012)MathSciNetMATHGoogle Scholar
  6. 6.
    Curtain, R., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  7. 7.
    da Prato, G., Zabbczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, UK (1992)CrossRefGoogle Scholar
  8. 8.
    Dauer, J.P., Mahmudov, N.I.: Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290, 373–394 (2004)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dauer, J.P., Mahmudov, N.I., Matar, M.M.: Approximate controllability of backward stochastic evolutiom equations in Hilbert spaces. J. Math. Anal. Appl. 323, 42–56 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)MATHGoogle Scholar
  11. 11.
    Grecksch, W., Tudor, C.: Stochastic Evolution Equations: A Hilbert Space Approch. Academic Verlag, Berlin (1995)MATHGoogle Scholar
  12. 12.
    Guendouzi, T.: Existence and controllability of fractional-order impulsive stochastic system with infinite delay. Discuss. Math. Differ. Incl. Control Optim. 33, 65–87 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funk. Ekvac. 21, 11–41 (1978)MathSciNetMATHGoogle Scholar
  14. 14.
    Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Springer, Berlin (1991)CrossRefMATHGoogle Scholar
  15. 15.
    Hu, Y., Wu, F., Huang, C.: Stochastic stability of a class of unbounded delay neutral stochastic differential equations with general decay rate. Int. J. Syst. Sci. 43, 308–318 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jeong, J., Kwun, Y., Park, J.: Approximate controllability for semilinear retarded functional differential equations. J. Dyn. Control Syst. 5, 329–346 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jeong, J., Roh, H.: Approximate controllability for semilinear retarded systems. J. Math. Anal. Appl. 321, 961–975 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lia, Z., Liu, K., Luo, J.: On almost periodic mild solutions for neutral stochastic evolution equations with infinite delay. Nonlinear Anal. 110, 182–190 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Liu, K.: Stochastic retarded evolution equations: green operators, convolutions, and solutions. Stoch. Anal. Appl. 26, 624–650 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liu, K.: The fundamental solution and its role in the optimal control of infinite dimensional neutral systems. Appl. Math. Optim. 609, 1–38 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Liu, K.: Existence of invariant measures of stochastic systems with delay in the highest order partial derivatives. Stat. Prob. Lett. 94, 267–272 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Luo, J.: Stability of stochastic partial differential equations with infinite delays. J. Comput. Appl. Math. 222, 364–371 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Muthukumar, P., Balasubramaniam, P.: Approximate controllability for semi-linear retarded stochastic systems in Hilbert spaces. IMA J. Math. Control Inf. 26, 131–140 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mohammed, S.E.A.: Stochastic Functional Differential Equations. Longman, Harlow/New York (1986)Google Scholar
  25. 25.
    Mokkedem, F.Z., Fu, X.: Approximate controllability for a semilinear evolution system with infinite delay. J. Dyn. Control Syst. 22, 71–89 (2016)Google Scholar
  26. 26.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
  27. 27.
    Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225, 708–717 (2013)MathSciNetMATHGoogle Scholar
  28. 28.
    Sakthivel, R., Nieto, J.J., Mahmudov, N.I.: Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan. J. Math. 14, 1777–1797 (2010)MathSciNetMATHGoogle Scholar
  29. 29.
    Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62, 1451–1459 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sakthivel, R., Suganya, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl. 63, 660–668 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Shen, L., Sun, J.: Approximate controllability of stochastic impulsive functional systems with infinite delay. Automatica 48, 2705–2709 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sobczyk, K.: Stochastic Differential Equations with Applications to Physics and Engineering. Klüwer Academic Publishers, London (1991)MATHGoogle Scholar
  33. 33.
    Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations. Stoch. Anal. Appl. 16, 965–975 (1998)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Taniguchi, T., Liu, K., Truman, A.: Existence, uniqueness and asymptotic behaviour of mild solutions to stochastic functional equations in Hilbert spaces. J. Differ. Equ. 181, 72–91 (2002)CrossRefMATHGoogle Scholar
  35. 35.
    Wang, L.: Approximate controllability results of semilinear integrodifferential equations with infinite delays. Sci. China Ser. F Inf. Sci. 52, 1095–1102 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Shanghai Key Laboratory of PMMPEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations