Applied Mathematics & Optimization

, Volume 75, Issue 2, pp 193–228 | Cite as

On a Class of Parametric (p, 2)-equations

  • Nikolaos S. Papageorgiou
  • Vicenţiu D. Rădulescu
  • Dušan D. Repovš


We consider parametric equations driven by the sum of a p-Laplacian and a Laplace operator (the so-called (p, 2)-equations). We study the existence and multiplicity of solutions when the parameter \(\lambda >0\) is near the principal eigenvalue \(\hat{\lambda }_1(p)>0\) of \((-\Delta _p,W^{1,p}_{0}(\Omega ))\). We prove multiplicity results with precise sign information when the near resonance occurs from above and from below of \(\hat{\lambda }_1(p)>0\).


Near resonance Local minimizer Critical group  Constant sign and nodal solutions Nonlinear maximum principle 

Mathematics Subject Classification

35J20 35J60 58E05 



V.D. Rădulescu was partially supported by the Romanian Research Council through the Grant CNCS-UEFISCDI-PCCA-23/2014. D.D. Repovš acknowledges the partial support of the Slovenian Research Agency through Grants P1-0292-0101, J1-7025-0101 and J1-6721-0101.


  1. 1.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints. Memoirs of the American Mathematical Society, vol. 196(915). American Mathematical Society, Providence (2008)MATHGoogle Scholar
  2. 2.
    Aizicovici, S., Papageorgiou, N.S., Staicu, V.: On \(p\)-superlinear equations with nonhomogeneous differential operator. Nonlinear Differ. Equ. Appl. 20, 151–175 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arcoya, D., Ruiz, D.: The Ambrosetti–Prodi problem for the \(p\)-Laplacian operator. Commun. Partial Differ. Equ. 31, 849–865 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Badiale, M., Lupo, D.: Some remarks on a multiplicity result by Mawhin–Schmitt. Acad. R. Belg. Bull. Cl. Sci. V Ser. 75, 210–224 (1989)MATHGoogle Scholar
  5. 5.
    Barile, S., Figueiredo, G.M.: Existence of least energy positive, negative and nodal solutions for a class of \(p\) & \(q\)-problems with potentials vanishing at infinity. J. Math. Anal. Appl. 427, 1205–1233 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benguria, R., Brezis, H., Lieb, E.: The Thomas–Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–189 (1981)CrossRefMATHGoogle Scholar
  7. 7.
    Carvalho, M.L.M., Goncalves, J.V.A., da Silva, E.D.: On quasilinear elliptic problems without the Ambrosetti–Rabinowitz condition. J. Math. Anal. Appl. 426, 466–483 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chang, K.C.: Methods in Nonlinear Analysis. Springer, New York (2005)MATHGoogle Scholar
  9. 9.
    Chaves, M.F., Ercole, G., Miyagaki, O.H.: Existence of a nontrivial solution for the \((p, q)\)-Laplacian in \({\mathbb{R}}^N\) without the Ambrosetti–Rabinowitz condition. Nonlinear Anal. 114, 133–141 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cherfits, L., Ilyasov, Y.: On the stationary solutions of generalized reaction-diffusion equations with \(p\) & \(q\) Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)MathSciNetGoogle Scholar
  11. 11.
    Chiappinelli, R., Mawhin, J., Nugari, R.: Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities. Nonlinear Anal. 18, 1099–1122 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cingolani, S., Vannella, G.: Critical groups computations on a class of Sobolev Banach spaces via Morse index. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 271–292 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cuesta, M., de Figueiredo, D., Gossez, J.P.: The beginning of the Fucik spectrum for the \(p\)-Laplacian. J. Differ. Equ. 159, 212–238 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dunford, N., Schwartz, J.: Linear Operators I. Wiley, New York (1958)MATHGoogle Scholar
  15. 15.
    Filippakis, M., Kristaly, A., Papageorgiou, N.S.: Existence of five nonzero solutions with exact sign for a \(p\)-Laplacian operator. Discret. Contin. Dyn. Syst. 24, 405–440 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall, CRC, Boca Raton (2006)MATHGoogle Scholar
  17. 17.
    Gasinski, L., Papageorgiou, N.S.: Nodal and multiple constant sign solutions for resonant \(p\)-Laplacian equations with a nonsmooth potential. Nonlinear Anal. 71, 5747–5772 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ladyzhenskaya, O., Uraltseva, N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)Google Scholar
  19. 19.
    Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ma, T.F., Ramos, M., Sanchez, L.: Multiple solutions for a class of nonlinear boundary value problems near resonance: a variational approach. Nonlinear Anal. 30, 3301–3311 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mawhin, J., Schmitt, K.: Landesman-Lazer type problems at an eigenvalue of odd multiplicity. Results Math. 14, 138–146 (1988)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mawhin, J., Schmitt, K.: Nonlinear eigenvalue problems with the parameters near resonance. Ann. Polon. Math. 51, 240–248 (1990)MathSciNetMATHGoogle Scholar
  23. 23.
    Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superlinear \((p, q)\)-equations without the Ambrosetti–Rabinowitz condition. Trans. Am. Math. Soc. 366, 4919–4937 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Papageorgiou, N.S., Kiritsi, S.Th.: Handbook of Applied Analysis. Springer, New York (2009)Google Scholar
  25. 25.
    Papageorgiou, N.S., Papalini, F.: Multiple solutions for nearly resonant nonlinear Dirichlet problems. Potential Anal. 37, 247–279 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Papageorgiou, N.S., Rădulescu, V.: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl. Math. Optim. 69, 393–430 (2014)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Papageorgiou, N.S., Rădulescu, V.: Solutions with sign information for nonlinear nonhomogeneous elliptic equations. Topol. Methods Nonlinear Anal. 45, 575–600 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Papageorgiou, N.S., Rădulescu, V.: Resonant \((p,2)\)-equations with asymmetric reaction. Anal. Appl. 13, 481–506 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Papageorgiou, N.S., Smyrlis, G.: On nonlinear nonhomogeneous resonant Dirichlet equations. Pac. J. Math. 264, 421–453 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Papageorgiou, N.S., Winkert, P.: On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction. Adv. Nonlinear Stud. 14, 565–592 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Papageorgiou, N.S., Winkert, P.: Resonant \((p,2)\)-equations with concave terms. Appl. Anal. 94, 342–360 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pucci, P., Serrin, J.: The Maximum Principle. Birkhäuser, Basel (2007)MATHGoogle Scholar
  33. 33.
    Ramos, M., Sanchez, L.: A variational approach to multiplicity in elliptic problems near resonance. Proc. R. Soc. Edinb. 127A, 385–394 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nikolaos S. Papageorgiou
    • 1
  • Vicenţiu D. Rădulescu
    • 2
    • 3
  • Dušan D. Repovš
    • 4
  1. 1.Department of MathematicsNational Technical UniversityAthensGreece
  2. 2.Department of Mathematics, Faculty of SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of MathematicsUniversity of CraiovaCraiovaRomania
  4. 4.Faculty of Education and Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations