Skip to main content

Advertisement

Log in

Dependence of urban air pollutants on morning/evening peak hours and seasons

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Traffic emission is a major source of air pollution in urban cities of developing world. This paper shows dependence of traffic-related air pollutants in urban cities on morning/evening peak hours and winter/summer seasons. This research also shows the meteorological impact, such as temperature (T), relative humidity (RH), and wind speed (WS), on traffic-related air pollutants in urban cites. Based on the research output, the elevated level of PM concentration was observed between 1.8 and 6.7 times at all nearby roadway locations compared with background (IIT [ISM] campus). We have found 2.3, 2.4, 2.6 (morning) and 2.0, 2.1, and 2.1 (evening) times higher average PM10, PM2.5, and PM1 concentrations, respectively, in the winter than summer monitoring periods across all locations, due to the stable boundary layer, lower mixing height, and lower friction velocity. It is indicated that urban meteorology plays a crucial role in increasing or decreasing exposed pollutant concentrations in various microenvironments. The analysis of PM2.5/PM10 ratios was lower during whole campaign due to higher contribution of coarser particles generated by vehicles. During winter and summer seasons, 0.57 and 0.33 was observed, respectively. It is indicated that 57% and 33% of PM10 makes up PM2.5 particle, respectively. PM concentrations have showed a negative linear relationship with T and WS and positive relationship with RH in winter/summer seasons. Therefore, traffic and meteorology play a big role to increase or decrease in traffic-related air pollutants in urban air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Base map source: “Dhanbad” Map. Google Maps, 15 December 2017

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams HS, Nieuwenhuijsen MJ, Colvile RN et al (2001) Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci Total Environ 279:29–44

    Article  CAS  Google Scholar 

  • Amato F, Pandolfi M, Escrig A et al (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780

    Article  CAS  Google Scholar 

  • Anderson HR, Favarato G, Atkinson RW (2013) Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Health 6:47–56

    Article  CAS  Google Scholar 

  • Bahreini R, Ervens B, Middlebrook AM et al (2009) Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J Geophys Res Atmos 114:D00F16(1–17). https://doi.org/10.1029/2008JD011493

  • Baker AK, Beyersdorf AJ, Doezema LA et al (2008) Measurements of nonmethane hydrocarbons in 28 United States cities. Atmos Environ 42:170–182

    Article  CAS  Google Scholar 

  • Boogaard H, Kos GP, Weijers EP et al (2011) Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos Environ 45:650–658

    Article  CAS  Google Scholar 

  • Bradley KS, Stedman DH, Bishop GA (1999) A global inventory of carbon monoxide emissions from motor vehicles. Chemos Glob Change Sci 1:65–72

    Article  CAS  Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242

    Article  CAS  Google Scholar 

  • Burkart J, Steiner G, Reischl G et al (2010) Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J Aerosol Sci 41:953–962

    Article  CAS  Google Scholar 

  • Cacciola RR, Sarva M, Polosa R (2002) Adverse respiratory effects and allergic susceptibility in relation to particulate air pollution: flirting with disaster. Allergy 57:281–286

    Article  CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol Air Qual Res 10:433–445

    Article  CAS  Google Scholar 

  • Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42:1–42

    Article  CAS  Google Scholar 

  • Charron A, Harrison RM (2003) Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ 37:4109–4119

    Article  CAS  Google Scholar 

  • Colbeck I, Nasir ZA, Ahmad S, Ali Z (2011) Exposure to PM10, PM2.5, PM1 and carbon monoxide on roads in Lahore, Pakistan. Aerosol Air Qual Res 11:689–695

    Article  CAS  Google Scholar 

  • Colvile RN, Hutchinson EJ, Mindell JS, Warren RF (2001) The transport sector as a source of air pollution. Atmos Environ 35:1537–1565

    Article  CAS  Google Scholar 

  • Cyrys J, Heinrich J, Hoek G et al (2003) Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Expo Sci Environ Epidemiol 13:134

    Article  CAS  Google Scholar 

  • Das M, Maiti SK, Mukhopadhyay U (2006) Distribution of PM2.5 and PM10–2.5 in PM10 fraction in ambient air due to vehicular pollution in Kolkata megacity. Environ Monit Assess 122:111–123

    Article  CAS  Google Scholar 

  • Dey S, Di Girolamo L, van Donkelaar A et al (2012) Variability of outdoor fine particulate (PM2.5) concentration in the Indian subcontinent: a remote sensing approach. Remote Sens Environ 127:153–161

    Article  Google Scholar 

  • Dubey B, Pal AK, Singh G (2012) Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad Region, Jharkhand, India. Atmos Pollut Res 3:238–246

    Article  CAS  Google Scholar 

  • Gehrig R, Buchmann B (2003) Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos Environ 37:2571–2580

    Article  CAS  Google Scholar 

  • Gokhale S, Pandian S (2007) A semi-empirical box modeling approach for predicting the carbon monoxide concentrations at an urban traffic intersection. Atmos Environ 41:7940–7950. https://doi.org/10.1016/j.atmosenv.2007.06.065

    Article  CAS  Google Scholar 

  • Gupta SK, Elumalai SP (2017) Size-segregated particulate matter and its association with respiratory deposition doses among outdoor exercisers in Dhanbad city, India. J Air Waste Manag Assoc 67:1137–1145

    Article  CAS  Google Scholar 

  • Gupta SK, Elumalai SP (2018) Adverse impacts of fog events during winter on fine particulate matter, CO and VOCs: a case study of a highway near Dhanbad, India. Weather 73:396–402

    Article  Google Scholar 

  • Gupta SK, Elumalai SP (2019) Exposure to traffic-related particulate matter and deposition dose to auto rickshaw driver in Dhanbad, India. Atmos Pollut Res. https://doi.org/10.1016/j.apr.2019.01.018

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20:5615–5629

    Article  CAS  Google Scholar 

  • Hai CD, Oanh NTK (2013) Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmos Environ 78:105–112

    Article  CAS  Google Scholar 

  • Han S, Wu J, Zhang Y et al (2014) Characteristics and formation mechanism of a winter haze–fog episode in Tianjin, China. Atmos Environ 98:323–330

    Article  CAS  Google Scholar 

  • Heim M, Mullins BJ, Umhauer H, Kasper G (2008) Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method. J Aerosol Sci 39:1019–1031

    Article  CAS  Google Scholar 

  • Hien PD, Bac VT, Tham HC et al (2002) Influence of meteorological conditions on PM2.5 and PM2.5–10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos Environ 36:3473–3484

    Article  CAS  Google Scholar 

  • Huang R-J, Zhang Y, Bozzetti C et al (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218

    Article  CAS  Google Scholar 

  • Ierodiakonou D, Zanobetti A, Coull BA et al (2016) Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immunol 137:390–399

    Article  CAS  Google Scholar 

  • Jamriska M, Morawska L, Mergersen K (2008) The effect of temperature and humidity on size segregated traffic exhaust particle emissions. Atmos Environ 42:2369–2382

    Article  CAS  Google Scholar 

  • Jung KH, Torrone D, Lovinsky-Desir S et al (2017) Short-term exposure to PM2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res 18:63

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Pinto JP, Wilson WE (2005) Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environ Sci Technol 39:4172–4179

    Article  CAS  Google Scholar 

  • Kim KH, Kumar P, Szulejko JE, Adelodun AA, Junaid MF, Uchimiya M, Chambers S (2017) Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere 174:268–279

    Article  CAS  Google Scholar 

  • Koçak M, Mihalopoulos N, Kubilay N (2007) Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos Environ 41:7351–7368

    Article  CAS  Google Scholar 

  • Krzyżanowski M, Kuna-Dibbert B, Schneider J (2005) Health effects of transport-related air pollution. WHO Regional Office Europe, Copenhagen

    Google Scholar 

  • Kumar A, Elumalai SP (2018) Influence of road paving on particulate matter emission and fingerprinting of elements of road dust. Arch Environ Contam Toxicol 75:424–435

    Article  CAS  Google Scholar 

  • Kumar P, Goel A (2016) Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections. Environ Sci Process Impacts 18:1220–1235

    Article  CAS  Google Scholar 

  • Li YJ, Lee BP, Su L et al (2015) Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmos Chem Phys 15:37–53

    Article  CAS  Google Scholar 

  • Lianou M, Chalbot M-C, Kotronarou A et al (2007) Dependence of home outdoor particulate mass and number concentrations on residential and traffic features in urban areas. J Air Waste Manag Assoc 57:1507–1517

    Article  CAS  Google Scholar 

  • Marcazzan GM, Vaccaro S, Valli G, Vecchi R (2001) Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35:4639–4650

    Article  CAS  Google Scholar 

  • Mathis U, Ristimäki J, Mohr M et al (2004) Sampling conditions for the measurement of nucleation mode particles in the exhaust of a diesel vehicle. Aerosol Sci Technol 38:1149–1160

    Article  CAS  Google Scholar 

  • Morgenstern V, Zutavern A, Cyrys J et al (2007) Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med 64:8–16

    Article  CAS  Google Scholar 

  • Pachauri T, Singla V, Satsangi A et al (2013) Characterization of major pollution events (dust, haze, and two festival events) at Agra, India. Environ Sci Pollut Res 20:5737–5752

    Article  CAS  Google Scholar 

  • Pandey P, Khan AH, Verma AK et al (2012) Seasonal trends of PM2.5 and PM10 in ambient air and their correlation in ambient air of Lucknow City, India. Bull Environ Contam Toxicol 88:265–270

    Article  CAS  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos Pollut Res 5:79–86

    Article  CAS  Google Scholar 

  • Pandian S, Gokhale S, Ghoshal AK (2009) Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections. Transp Res Part Transp Environ 14:180–196. https://doi.org/10.1016/j.trd.2008.12.001

    Article  Google Scholar 

  • Pant P, Shukla A, Kohl SD et al (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Env 109:178–189

    Article  CAS  Google Scholar 

  • Pant P, Habib G, Marshall JD, Peltier RE (2017) PM2.5 exposure in highly polluted cities: a case study from New Delhi, India. Environ Res 156:167–174

    Article  CAS  Google Scholar 

  • Pérez N, Pey J, Querol X et al (2008) Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691

    Article  CAS  Google Scholar 

  • Pérez N, Pey J, Cusack M et al (2010) Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Sci Technol 44:487–499

    Article  CAS  Google Scholar 

  • Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos Environ 45:3621–3630

    Article  CAS  Google Scholar 

  • Pipal AS, Jan R, Satsangi PG et al (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual Res 14:1685–1700

    Article  CAS  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  • Prabhu V, Gupta SK, Madhwal S, Shridhar V (2019) Exposure to atmospheric particulates and associated respirable deposition dose to street vendors at residential and commercial site in Dehradun city. Saf Health Work. https://doi.org/10.1016/j.shaw.2019.01.005

  • Rovelli S, Cattaneo A, Borghi F et al (2017) Mass concentration and size-distribution of atmospheric particulate matter in an urban environment. Aerosol Air Qual Res 17:1142–1155

    Article  CAS  Google Scholar 

  • Roy D, Singh G, Gosai N (2015) Identification of possible sources of atmospheric PM10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India. Environ Monit Assess 187:680

    Article  CAS  Google Scholar 

  • Saarnio K, Sillanpää M, Hillamo R et al (2008) Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe. Atmos Environ 42:9087–9097

    Article  CAS  Google Scholar 

  • Sandeep A, Rao TN, Rao SVB (2015) A comprehensive investigation on afternoon transition of the atmospheric boundary layer over a tropical rural site. Atmos Chem Phys 15:7605–7617

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Shahsavani A, Naddafi K, Haghighifard NJ et al (2012) The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. J Arid Environ 77:72–83

    Article  Google Scholar 

  • Sharma SK, Mandal TK, Arya BC et al (2010) Effects of the solar eclipse on 15 January 2010 on the surface O3, NO, NO2, NH3, CO mixing ratio and the meteorological parameters at Thiruvanathapuram, India. In: Daglis IA (ed) Annales geophysicae. Copernicus GmbH, Germany. vol 28, pp 1199–1205

  • Singh AK, Mondal GC (2008) Chemical characterization of wet precipitation events and deposition of pollutants in coal mining region, India. J Atmos Chem 59:1–23

    Article  CAS  Google Scholar 

  • Singh S, Tiwari S, Gond DP et al (2015) Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmos Res 161:25–35

    Article  CAS  Google Scholar 

  • Singh S, Tiwari S, Hopke PK et al (2018) Ambient black carbon particulate matter in the coal region of Dhanbad, India. Sci Total Environ 615:955–963

    Article  CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SMS (2010) Analysis and interpretation of particulate matter—PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos Pollut Res 1:184–194

    Article  CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SS (2011) Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmos Environ 45:3091–3102

    Article  CAS  Google Scholar 

  • Srimuruganandam B, Nagendra SS (2012) Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere 88:120–130

    Article  CAS  Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS et al (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmospheric Chem 62:193–209

    Article  CAS  Google Scholar 

  • Tiwari S, Srivastava AK, Chate DM et al (2014) Impacts of the high loadings of primary and secondary aerosols on light extinction at Delhi during wintertime. Atmos Environ 92:60–68. https://doi.org/10.1016/j.atmosenv.2014.03.064

    Article  CAS  Google Scholar 

  • Tiwari S, Hopke PK, Pipal AS et al (2015) Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi. India. Atmospheric Res 166:223–232

    Article  CAS  Google Scholar 

  • Turner JR, Allen DT (2008) Transport of atmospheric fine particulate matter: part 2—findings from recent field programs on the intraurban variability in fine particulate matter. J Air Waste Manag Assoc 58:196–215

    Article  CAS  Google Scholar 

  • UNFPA (2008) State of world population 2007: unleashing the potential of urban growth. http://www.unfpa.org/swp/2007/english/introduction.html. Accessed 04 Oct 2016

  • Vara-Vela A, Andrade MF, Kumar P et al (2016) Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model. Atmos Chem Phys 16:777–797

    Article  CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X et al (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849

    Article  CAS  Google Scholar 

  • von Schneidemesser E, Monks PS, Plass-Duelmer C (2010) Global comparison of VOC and CO observations in urban areas. Atmos Environ 44:5053–5064. https://doi.org/10.1016/j.atmosenv.2010.09.010

    Article  CAS  Google Scholar 

  • Wang Y, Hopke PK, Utell MJ (2011) Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol Air Qual Res 11:473–481

    Article  CAS  Google Scholar 

  • Warneke C, McKeen SA, De Gouw JA et al (2007) Determination of urban volatile organic compound emission ratios and comparison with an emissions database. J Geophys Res Atmospheres 112:D10S47(1–13)

  • Wehner B, Wiedensohler A (2003) Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos Chem Phys 3:867–879

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2000) Air quality guidelines for Europe. WHO Regional Publications, European Series No. 91, WHO Regional Office for Europe, Copenhagen

  • WHO (2016) WHO (World Health Organization) releases country estimates on air pollution exposure and health impact. https://www.who.int/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact. Accessed 30 Dec 2017

  • Yadav SK, Jain MK (2017) Exposure to particulate matter in different regions along a road network, Jharia coalfield, Dhanbad, Jharkhand, India. Curr Sci 00113891:112

    Google Scholar 

  • Yadav S, Praveen OD, Satsangi PG (2015) The effect of climate and meteorological changes on particulate matter in Pune, India. Environ Monit Assess 187:402

    Article  CAS  Google Scholar 

  • Yadav R, Sahu LK, Beig G et al (2017) Ambient particulate matter and carbon monoxide at an urban site of India: influence of anthropogenic emissions and dust storms. Environ Pollut 225:291–303

    Article  CAS  Google Scholar 

  • Zhang Y-L, Cao F (2015) Fine particulate matter (PM2.5) in China at a city level. Sci Rep 5:14884

    Article  CAS  Google Scholar 

  • Zhu Y, Hinds WC, Kim S et al (2002) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad for providing the logistic supports. The authors also acknowledge Jharkhand Space Association Center for sharing meteorological data from the weather station installed in IIT (ISM) campus. They also thank “Regional office Jharkhand State Pollution Control Board Dhanbad” for providing 24-h online ambient air quality data. Sincere thanks to Mr. Anil Kumar (Ph.D. Scholar) and Mr. Sanjeet Singh (B. Tech student) in the Dept. of ESE, IIT (ISM), Dhanbad for his help in conducting field study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Pandian Elumalai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Elumalai, S.P. Dependence of urban air pollutants on morning/evening peak hours and seasons. Arch Environ Contam Toxicol 76, 572–590 (2019). https://doi.org/10.1007/s00244-019-00616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00616-x

Navigation