Morphogenetic Alterations in Melipona quadrifasciata anthidioides (Hymenoptera: Apidae) Associated with Pesticides

  • Arlete Prado-Silva
  • Lorena Andrade Nunes
  • Jádilla Mendes dos Santos
  • Paulo Roberto Antunes de Mello Affonso
  • Ana Maria Waldschmidt
Article
  • 11 Downloads

Abstract

Bees are major pollinators of both native flora and cultured crops. Nonetheless, despite their key functional role in ecosystems and agriculture, bee populations have been affected worldwide by deforestation and contamination by insecticides. Conversely, little is known about the effects of pesticides on morphogenetic development of neotropical stingless bees. We compared the fluctuating asymmetry (FA) in newly emerged bees and foragers of Melipona quadrifasciata anthidioides exposed to pesticides (experimental greenhouse and cultivated field). In addition, visitation behavior of foragers was inferred from pollen analyses and direct observation. A significant increase of FA (P < 0.001) was detected in bees from the greenhouse. Even though pesticides might affect their development, foragers seem to avoid contaminated plants whenever possible, as confirmed by pollen and visitation analyses. Consequently, the conservation of natural forests in agricultural landscapes is essential to ensure the health of colonies in stingless bees.

Notes

Acknowledgements

The authors thank Programa de Formação de Recursos Humanos—Petrobras (PRH-PB 211) for the financial support, Mr. José Silva for allowing us to establish the meliponary in the cultivated area, and the beekeeper Mr. Eduardo Sepúlveda for the providing the bee samples in the control area.

References

  1. Abaga NOZ, Alibert P, Dousset S, Savadogo PW, Savadogo M, Sedogo M (2011) Insecticide residues in cotton soils of Burkina Faso and effects of insecticides on fluctuating asymmetry in honey bees (Apis mellifera Linnaeus). Chemosphere.  https://doi.org/10.1016/j.chemosphere.2010.12.021 Google Scholar
  2. Antonini Y, Costa RG, Martins RP (2006) Floral preferences of a neotropical stingless bee, Melipona quadrifasciata Lepeletier (Apidae: Meliponina) in an urban forest fragment. Braz J Biol.  https://doi.org/10.1590/S1519-69842006000300012 Google Scholar
  3. Atkins EL, Kallum D (1986) Comparative morphogenetic and toxicity studies on the effect of pesticides on honeybee brood. J Apicult Res 25:242–255CrossRefGoogle Scholar
  4. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie.  https://doi.org/10.1051/apido/2010012 Google Scholar
  5. Carreck NL, Ratnieks FLW (2014) The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? J Apicult Res.  https://doi.org/10.3896/IBRA.1.53.5.08 Google Scholar
  6. Carreck NL, Bal BV, Martin SJ (2010) Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J Apicult Res.  https://doi.org/10.3896/IBRA.1.49.1.13 Google Scholar
  7. Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, Aubert M, Carpentier P, Faucon JP (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ Toxicol Chem.  https://doi.org/10.1002/etc.361 Google Scholar
  8. Cressey D (2015) Bee studies stir up pesticide debate. Nature 520:416CrossRefGoogle Scholar
  9. Currie RW, Pernal SF, Guzmán-Novoa E (2010) Honey bee colony losses in Canada. J Apicult Res.  https://doi.org/10.3896/IBRA.1.49.1.18 Google Scholar
  10. Del Sarto MC, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie.  https://doi.org/10.1007/s13592-014-0281-6 Google Scholar
  11. Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS.  https://doi.org/10.1073/pnas.1314923110 Google Scholar
  12. Dulin F, Halm-Lemeille MP, Lozano S, Lepailleur A, Santos JSO, Rault S, Bureau R (2012) Interpretation of honeybees contact toxicity associated to acetylcholinesterase inhibitors. Ecotoxicol Environ Saf.  https://doi.org/10.1016/j.ecoenv.2012.01.007 Google Scholar
  13. Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54:561–564Google Scholar
  14. Fine JD, Cox-Foster DL, Mullin CA (2017) An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae. Sci Rep.  https://doi.org/10.1038/srep40499 Google Scholar
  15. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26CrossRefGoogle Scholar
  16. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie.  https://doi.org/10.1051/apido/2010018 Google Scholar
  17. Kerr WE, Santos Neto GR (1956) Contribuição para o conhecimento da bionomia dos Meliponini V.: divisão de trabalho ente operárias de Melipona quadrifasciata Lep. Insectes Soc. http://doi.org/10.1007/BF02225762
  18. Kerr WE, Carvalho GA, Nascimento VA (1996) Abelha uruçu: biologia, manejo e conservação. Fundação Acangaú, Belo HorizonteGoogle Scholar
  19. Kessler SC, Tiedeken EJ, Kerry L, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature.  https://doi.org/10.1038/nature14414 Google Scholar
  20. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357CrossRefGoogle Scholar
  21. Klingenberg CP (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7:843–934CrossRefGoogle Scholar
  22. Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotox Environ Safe.  https://doi.org/10.1007/s10646-012-0927-y Google Scholar
  23. Leary RF, Allendorf FW (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol Evol 4:214–217CrossRefGoogle Scholar
  24. Lima MAP, Martins GF, Oliveira EE, Guedes RNC (2016) Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A.  https://doi.org/10.1007/s00359-016-1110-3 Google Scholar
  25. Martin JS, Ball BV, Carreck NL (2013) The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK. J Apicult Res.  https://doi.org/10.3896/IBRA.1.52.5.12 Google Scholar
  26. Medrzycki P, Giffard H, Aupinel P et al (2013) Standard methods for toxicology research in Apis mellifera. J Apicult Res.  https://doi.org/10.3896/IBRA.1.52.4.14 Google Scholar
  27. Michener CD (2013) The Meliponini. In: Vit P, Pedro SRM, Roubik D (eds) Pot-honey: a legacy of stingless bees. Springer, New York, pp 3–17CrossRefGoogle Scholar
  28. Nunes LA, Araújo ED, Marchini LC (2015) Fluctuating asymmetry in Apis mellifera (Hymenoptera: Apidae) as bioindicator of anthropogenic environments. Rev Biol Trop 63:673–682CrossRefGoogle Scholar
  29. Ostiguy N, Eitzer B (2014) Overwintered brood comb honey: colony exposure to pesticide residues. J Apicult Res.  https://doi.org/10.3896/IBRA.1.53.3.10 Google Scholar
  30. Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Markow TA (ed) Developmental instability: its origins and evolutionary implications. Kluwer Academic Publishers, Dordrecht, pp 335–364CrossRefGoogle Scholar
  31. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421CrossRefGoogle Scholar
  32. Poquet Y, Kairo G, Tchamitchian S, Brunet J, Belzunces LP (2015) Wings as a new route of exposure to pesticides in the honey bee. Environ Toxicol.  https://doi.org/10.1002/etc.3014 Google Scholar
  33. Rennich K, Pettis J, Vanengelsdorp D, Bozarth R, Eversole H et al (2012) National honey bee pests and diseases survey report. USDAGoogle Scholar
  34. Rocha MCLS (2012) Efeitos dos agrotóxicos sobre as abelhas: proposta metodológica de acompanhamento. IBAMA, BrasíliaGoogle Scholar
  35. Rohlf FJ (2013) TpsDig2, digitize landmarks and outlines, version 2.17. Department of Ecology and Evolution—Stony at Stony Brook University. Stony Brook, New YorkGoogle Scholar
  36. Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie.  https://doi.org/10.1007/s13592-015-0424-4 Google Scholar
  37. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature.  https://doi.org/10.1038/nature01014 Google Scholar
  38. Tomé HVV, Ramos GS, Araújo MF, Santana WC, Santos GR, Guedes RNC, Maciel CD, Newland PL, Oliveira EE (2017) Agrochemical synergism imposes higher risk to neotropical bees than to honeybees. R Soc Open Sci.  https://doi.org/10.1098/rsos.160866 Google Scholar
  39. VanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol.  https://doi.org/10.1016/j.jip.2009.06.011 Google Scholar
  40. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science.  https://doi.org/10.1126/science.1215025 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arlete Prado-Silva
    • 1
  • Lorena Andrade Nunes
    • 1
  • Jádilla Mendes dos Santos
    • 1
  • Paulo Roberto Antunes de Mello Affonso
    • 1
  • Ana Maria Waldschmidt
    • 1
  1. 1.Universidade Estadual do Sudoeste da Bahia – UESBJequiéBrazil

Personalised recommendations