Continuous Exposure to Microplastics Does Not Cause Physiological Effects in the Cultivated Mussel Perna perna

  • Marina F. M. Santana
  • Fabiana T. Moreira
  • Camilo D. S. Pereira
  • Denis M. S. Abessa
  • Alexander Turra


The environmental impact of microplastics is a challenging theme, especially under realistic experimental conditions. We investigated physiological responses to 0.1–1.0 μm PVC particles intake by the mussel Perna perna after a relative long-term exposure (90 days) at a less extreme concentration compared with previous studies (0.125 g/L). Microplastic intake was inferred by the presence of PVC in the feces of mussels, and physiological damages were assessed through ingestion rate, assimilation efficiency, growth rate, cellular and molecular biomarkers (lysosomal integrity, lipid peroxidation, and DNA damage), and condition index. All physiological responses showed nonsignificant effects of the microplastics on the exposed mussels. We suggest that, despite the experimental concentration of microplastics, mussels were able to acclimate to the exposure through their abilities for long-term recovery and tolerance to stresses. These data have positive implications for environmental health and in terms of human food resource because mussel farming is a worldwide practice that heavily relies on plastic materials, increasing the chances of microplastic exposure and mussels contamination.



The authors thank CAPES for the student grants, CNPq for the research grant of Denis Abessa (CNPq, 311609/2014-7), Plastivida (Plastics Socio-environmental Institute) for the fellowship to Fabiana Tavares Moreira the technical staff of IOUSP, Liv Ascer and Elisa V. S. Menck for the support throughout the experiment, Prof. Dr. Márcio Reis Custódio for content revision, and Ian McCarthy (FAPESP, 14/21804-3) and Linda Gwen Waters for the language and structure revision.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Supplementary material

244_2018_504_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)


  1. ABIPLAST. Associação brasileira da indústria do plástico (2012). Accessed 15 Jan 2013
  2. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605CrossRefGoogle Scholar
  3. Arthur C, Baker J, Bamford H (eds) (2009) Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris (NOAA Technical Memorandum NOS-OR&R-30). NOAA, Silver SpringGoogle Scholar
  4. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222CrossRefGoogle Scholar
  5. Baird RH (1958) Measurement of condition in mussels and oysters. J Cons Perm Inter Explor Mer 23:249–257CrossRefGoogle Scholar
  6. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond 364:1985–1998CrossRefGoogle Scholar
  7. Bayne BL, Hawkins AJS, Navarro E (1987) Feeding and digestion by mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. J Exp Mar Biol Ecol 111:1–22CrossRefGoogle Scholar
  8. Bayne BL, Iglesias JIP, Hawkins AJS, Navarro E, Heral M, Deslous-Paoli JM (1993) Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quality and organic content of the séston. J Mar Biol Assoc 73:813–829CrossRefGoogle Scholar
  9. Besseling E, Wegner A, Foekema EM, Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600CrossRefGoogle Scholar
  10. Blakley BR (1985) The effect of cadmium chloride on the immune response in mice. Can J Comp Med 49:104–108Google Scholar
  11. Bocchetti R, Regoli F (2006) Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65:913–921CrossRefGoogle Scholar
  12. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278CrossRefGoogle Scholar
  13. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031CrossRefGoogle Scholar
  14. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastics on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179CrossRefGoogle Scholar
  15. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23:2388–2392CrossRefGoogle Scholar
  16. Cole M, Lindeque P, Halsband C, Galloway T (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597CrossRefGoogle Scholar
  17. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead RM, Morger J, Galloway T (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655CrossRefGoogle Scholar
  18. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137CrossRefGoogle Scholar
  19. Conover RJ (1996) Assimilation of organic matter by zooplâncton. Limnol Oceanogr 11:338–345CrossRefGoogle Scholar
  20. Di Giulio RT, Scanlon PF (1985) Effects of cadmium ingestion and food restriction on energy metabolism and tissue metal concentrations in mallard ducks (Arias platyrhynchos). Environ Res 37:433–444CrossRefGoogle Scholar
  21. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons float at sea. PLoS ONE 9:e1111913Google Scholar
  22. Erikson C, Burton H (2003) Origins and biological accumulation of plastic particles in fur seals from Macquarie Island. Ambio 32:380–384CrossRefGoogle Scholar
  23. FAO (Food and Agriculture Organization of the United Nations) (2011) World aquaculture 2010. Technical Paper. No. 500/1 2011. FAO, RomeGoogle Scholar
  24. FAO (Food and Agriculture Organization of the United Nations) (2014) The state of world fisheries and aquaculture. FAO, RomeGoogle Scholar
  25. Fernandes FC, Souza RCCL, Junqueira AOR, Rapagnã LC, Ramos AB (2008) Distribuição Mundial e o Impacto de sua Introdução no Brasil. In: Junior CR, Weber LI, Conceição MB (eds) O mexilhão Perna perna (L.) biologia, ecologia e aplicações, 1st edn. Interciência, Rio de Janeiro, pp 25–30Google Scholar
  26. Ferreira JF, Magalhães ARM (2010) Cultivo de Mexilhões, Instruções e Ajuda. Accessed 28 Feb 2010
  27. Fisner M, Taniguchi S, Majer AP, Bícego MC, Turra A (2013) Concentration and composition of polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: implications for small-scale diagnostic and environmental monitoring. Mar Pollut Bull 76:349–354CrossRefGoogle Scholar
  28. Foekma EM, Gruijter C, Mergia MT, van Franeker JA, Murk TJ, Koelmans AA (2013) Plastic in North Sea fish. Environ Sci Technol 47:8818–8824CrossRefGoogle Scholar
  29. Foster-Smith RL (1975) The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderrna edule (L.) and Venerupis pullastra (Montagu). J Exp Mar Biol Ecol 7:1–22CrossRefGoogle Scholar
  30. Gagné F, Trottier S, Blaise C, Sproull J, Ernst B (1995) Genotoxicity of sediment extracts obtained in the vicinity creosote-treated wharf to rainbow trout hapocyties. Toxicol Lett 78:175–182CrossRefGoogle Scholar
  31. Gallagher A, Rees A, Rowe R, Stevens J, Wright P (2015) Microplastics in the Solent estuarine complex, UK: an initial assessment. Mar Pollut Bull 102:243–249CrossRefGoogle Scholar
  32. GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment (Rep. Stud. GESAMP No. 90.). International Maritime Organization, LondonGoogle Scholar
  33. GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) (2016) Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment (Rep. Stud. GESAMP No. 93.). International Maritime Organization, LondonGoogle Scholar
  34. Graham ER, Thompson JT (2009) Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29CrossRefGoogle Scholar
  35. Green DS (2016) Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ Pollut 216:95–103CrossRefGoogle Scholar
  36. Gregory MR, Andrady AL (2003) Plastics in the marine environment. In: Andrady AL (ed) Plastics and the environment. Wiley, New Jersey, pp 379–401Google Scholar
  37. Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of Hsp70 and Hsp70 gene expression in the pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Null 205:160–169Google Scholar
  38. Hämer J, Gutow L, Köhler A, Saborowski R (2014) Fate of microplastics in the marine isopod Idotea emarginata. Environ Sci Technol 48:13451–13458CrossRefGoogle Scholar
  39. Held P (2015) An introduction to reactive oxygen species: Measurement of ROS in cells. Biotek, VermontGoogle Scholar
  40. Helmuth B (2009) From cells to coastlines: how can we use physiology to forecast the impacts of climate change? J Exp Biol 212:753–760CrossRefGoogle Scholar
  41. Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Bio Bull 201:374–384CrossRefGoogle Scholar
  42. Henriques MB (2004) Resistência do mexilhão Perna perna (Linnaeus, 1758) proveniente de bancos naturais da baixada santista, a variação de temperatura, salinidade, tempo de exposição ao ar e determinação da incidência de parasitismo. Dissertation, São Paulo State UniversityGoogle Scholar
  43. Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward M (2011) Organic micropollutants in marine plastics from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692CrossRefGoogle Scholar
  44. Hunt HL, Scheibling RE (2001) Predicting wave dislodgement of mussels: variation in attachment strength with body size, habitat, and season. Mar Ecol Prog Ser 213:157–164CrossRefGoogle Scholar
  45. Imhof HK, Laforsch C (2016) Hazardous or not—are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles? Environ Pollut 218:383–391CrossRefGoogle Scholar
  46. Itziou A, Kaloyianni M, Dimitriadis VK (2011) Effects of organic contaminants in reactive oxygen species, protein carbonylation and DNA damage on digestive gland and heamolymph of land snails. Chemosphere 85:1101–1107CrossRefGoogle Scholar
  47. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517CrossRefGoogle Scholar
  48. Jørgensen CB (1981) Feeding and cleaning mechanisms in the suspension feeding bivalve Mytilus edulis. Mar Biol 65:159–163CrossRefGoogle Scholar
  49. Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, Li D, Shi H (2016) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184CrossRefGoogle Scholar
  50. Lithner D, Damberg J, Dave G, Larsson A (2009) Leachates from plastic consumer products—screening for toxicity with Daphnia magna. Chemosphere 74:1195–1200CrossRefGoogle Scholar
  51. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324CrossRefGoogle Scholar
  52. Lowe DM, Fossato VU, Depledge MH (1995) Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from Venice lagoon: as in vitro study. Mar Ecol Prog Ser 129:189–196CrossRefGoogle Scholar
  53. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060CrossRefGoogle Scholar
  54. Lushchak VI (2016) Contaminant-induced oxidative stress in fish: a mechanism approach. Fish Physiol Biochem 42:711–747CrossRefGoogle Scholar
  55. Marques HLA (1988) Considerações ecológicas sobre o mexilhão Perna perna (Linnaeus, 1758) em bancos naturais da região de Ubatuba, São Paulo, Brasil. Dissertation, University of Campinas, CampinasGoogle Scholar
  56. Mathalon A, Hill P (2014) Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81:69–79CrossRefGoogle Scholar
  57. Moore MN, Allen JI, McVeigh A (2006) Environmental prognostics: an integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar Environ Res 61:278–304CrossRefGoogle Scholar
  58. Moreira FT (2011) Ecotoxicological consequences of novel biocides in the discharge of seawater used in cooling systems from coastal buildings, Dissertation, University of SydneyGoogle Scholar
  59. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217CrossRefGoogle Scholar
  60. Navarro E, Iglesias JIP, Camacho AP, Labarta U (1996) The effect of the diets of phytoplankton and suspended bottom material on feeding and absorption of raft mussel (Mytilus galloprovincialis Lmk). J Exp Mar Biol Ecol 198:175–189CrossRefGoogle Scholar
  61. OECD (The Organisation for Economic Cooperation and Development) (2004) Emission Scenario Document on Plastic Additives. Series on Emission Scenario Documents, No. 3. OECD Environmental Health and Safety Publications. Environment Directorate, ParisGoogle Scholar
  62. Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO, Wollenberger L, Santos EM, Paull GC, Van Look KJW, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc B 364:2047–2062CrossRefGoogle Scholar
  63. Olive PL (1998) DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen 11:487–495CrossRefGoogle Scholar
  64. Omory M, Ikeda T (1984) Methods in marine zooplancton ecology. Wiley, New YorkGoogle Scholar
  65. Pereira CDS, Martín-Díaz ML, Zanette J, Cesar A, Choueri RB, Abessa DMS, Catharino MGM, Vasconcellos MBA, Bainy ACD, Sousa ECPM, DelValls TA (2011) Integrated biomarker responses as environmental status descriptors of a coastal zone (São Paulo, Brazil). Ecotoxicol Environ Saf 74:1257–1264CrossRefGoogle Scholar
  66. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086CrossRefGoogle Scholar
  67. Resgalla C Jr, Manzoni G, Kuroshima KN, Reis FO, Laitano RW, Laitano KS (1999) Variabilidade nas taxas fisiológicas do mexilhão Perna perna em dois sítios de cultivo do litoral norte de Santa Catarina. Facimar 3:33–40Google Scholar
  68. Resgalla C Jr, Brasil ES, Salomão LC (2007) The effect of temperature and salinity on the physiological rates of the mussel Perna perna (Linnaeus 1758). Braz Arch Biol technol 50:543–556CrossRefGoogle Scholar
  69. Rodolfo A, Nunes LR, Ormanji W (2006) Tecnologia do PVC. BRASKEM, São PauloGoogle Scholar
  70. Santana MFM (2015) Effects of microplastic contamination on marine biota. Dissertation, University of São PauloGoogle Scholar
  71. Santana MFM, Ascer LG, Custódio MR, Pereira CDS, Moreira F, Turra A (2016) Microplastics contamination in mussels’ natural beds from a Brazilian urbanized coastal region: an initial evaluation for further bioassessments. Mar Pollut Bull 106:183–189CrossRefGoogle Scholar
  72. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Goïc NL, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. PNAS 113:2430–2435CrossRefGoogle Scholar
  73. Syberg K, Khan FR, Selck H, Palmqvist A, Banta GT, Daley J, Sano L, Duhaime MB (2015) Microplastics: addressing ecological risk through lessons learned. Environ Toxicol Chem 34:945–953CrossRefGoogle Scholar
  74. Underwood AJ, Peterson CH (1988) Towards an ecological framework for investigating pollution. Mar Ecol Prog Ser 46:227–234CrossRefGoogle Scholar
  75. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70CrossRefGoogle Scholar
  76. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499CrossRefGoogle Scholar
  77. Von Moos N, Burkhardt-Holm P, Kohler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335CrossRefGoogle Scholar
  78. Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130CrossRefGoogle Scholar
  79. Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behaviour of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497CrossRefGoogle Scholar
  80. Welden NAC, Cowie PR (2016) Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut 218:895–900CrossRefGoogle Scholar
  81. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  82. Widdows J, Bayne BL (1971) Temperature acclimation of Mytilus edulis with reference to its energy budget. J Mar Biol Assoc UK 51:827–843CrossRefGoogle Scholar
  83. Wills ED (1987) Evaluation of lipid peroxidation in lipids and biological membranes. In: Snell K, Mullock B (eds) Biochemical toxicology: a practical approach, 1st edn. IRL Press, Washington, pp 127–152Google Scholar
  84. Ye S, Andrady AL (1991) Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar Pollut Bull 22:608–613CrossRefGoogle Scholar
  85. Zilberberg C, Sereno D, Lima G, Custódio MR, Lôbo-Hajdu G (2011) Effect of mussel’s gender and size on a stress response biomarker. Water Air Soil Pollut 217:317–320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marina F. M. Santana
    • 1
    • 2
    • 3
  • Fabiana T. Moreira
    • 1
  • Camilo D. S. Pereira
    • 4
  • Denis M. S. Abessa
    • 5
  • Alexander Turra
    • 1
  1. 1.Department of Biological Oceanography, Oceanographic Institute (IO)University of São Paulo (USP)São PauloBrazil
  2. 2.College of Science and Engineering, Australian Tropical Science and Innovation Precinct (ATSIP)James Cook University (JCU)TownsvilleAustralia
  3. 3.Australian Institute of Marine Science (AIMS)Townsville, Cape ClevelandAustralia
  4. 4.Department of Marine ScienceFederal University of São Paulo (UNIFESP)SantosBrazil
  5. 5.Paulista State University (UNESP)São VicenteBrazil

Personalised recommendations