Advertisement

Mercury Levels in Fish for Human Consumption from the Southeast Gulf of California: Tissue Distribution and Health Risk Assessment

  • A. I. Martínez-Salcido
  • J. Ruelas-Inzunza
  • B. Gil-Manrique
  • O. Nateras-Ramírez
  • F. Amezcua
Article

Abstract

We assessed human health risk due to mercury (Hg) concentrations in fish from three coastal lagoons (Urías, Huizache, and Teacapán) in the SE Gulf of California. We also determined Hg distribution in muscle and liver of analyzed ichthyofauna and compared the results among studied areas according to tissue, season, and lagoon system by using multivariate analyses. Levels of Hg in most of the analyzed fish followed the sequence liver > muscle. The highest Hg levels in muscle (2.80 µg g−1 dw) and liver (9.51 µg g−1 dw) were measured in Cynoscion reticulatus and Pomadasys macracanthus, respectively, although according to the multivariate analyses, statistical differences of Hg concentrations were not found according to the season and the tissue but were found according to the system. It seems that the higher concentrations were associated with areas where the hydrological regime is lower. With respect to health risk assessment, the highest hazard quotients were estimated for Cynoscion reticulatus (0.45) and Stellifer furthii (0.29) from Urías and Pomadasys macracanthus (0.35) from Huizache. None of the studied fish represent a risk for consumers in terms of Hg levels in the edible portion.

Notes

Funding

This study was funded by Programa de Mejoramiento del Profesorado para el Tipo Superior (PRODEP) and Universidad Nacional Autónoma de México (PAPIIT IN208911-3).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akagi H, Branches F, Kinjo Y (1994) Methylmercury pollution in Tapajos river basin, Amazon. Environ Sci 3(1):25–32Google Scholar
  2. Amezcua F, Muro-Torres V, Soto-Jiménez MF (2015) Stable isotope analysis versus TROPH: a comparison of methods for estimating fish trophic positions in a subtropical estuarine system. Aquat Ecol 49:235–250.  https://doi.org/10.1007/s10452-015-9517-4 CrossRefGoogle Scholar
  3. Barone G, Storelli A, Garofalo R, Busco VP, Quaglia NC, Centrone G, Storelli MM (2015) Assessment of mercury and cadmium via seafood consumption in Italy: estimated dietary intake (EWI) and target hazard quotient (THQ). Food Addit Contam Part A 32(8):1277–1286.  https://doi.org/10.1080/19440049.2015.1055594 CrossRefGoogle Scholar
  4. Burger J, Gochfeld M (2011) Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci Total Environ 409(8):1418–1429.  https://doi.org/10.1016/j.scitotenv.2010.12.034 CrossRefGoogle Scholar
  5. Cao H, Chen J, Zhang J, Zhang H, Qiao L, Men Y (2010) Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. J Environ Sci 22(11):1792–1799.  https://doi.org/10.1016/S1001-0742(09)60321-1 CrossRefGoogle Scholar
  6. Cardoso-Mohedano G, Páez-Osuna F, Amezcua-Martínez F, Ruiz-Fernández AC, Ramírez-Reséndiz G, Sánchez-Cabeza J (2016) Combined environmental stress from shrimp farm and dredging releases in a subtropical coastal lagoon (SE Gulf of California). Mar Pollut Bull 104:83–91.  https://doi.org/10.1016/j.marpolbul.2016.02.008 CrossRefGoogle Scholar
  7. Castilhos Z, Rodrigues-Filho S, Cesar R, Rodrigues AP, Villas-Bôas R, de Jesus I, Lima M, Faial K, Miranda A, Brabo E, Beinhoff C, Santos E (2015) Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. Environ Sci Pollut Res 22:11255–11264.  https://doi.org/10.1007/s11356-015-4340-y CrossRefGoogle Scholar
  8. Chatterjee M, Canario J, Sarkar SK, Branco V, Godhantaraman N, Bhattacharya BD, Bhattacharya A (2011) Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India—a UNESCO World Heritage Site. Environ Monit Assess 184:5239–5254.  https://doi.org/10.1007/s10661-011-2336-8 CrossRefGoogle Scholar
  9. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, PlymouthGoogle Scholar
  10. Contreras F (1985) Las Lagunas Costeras Mexicanas. Centro de Ecodesarrollo, Secretaría de Pesca, MéxicoGoogle Scholar
  11. de la Lanza EG, García JL (1991) Sistema lagunar Huizache-Caimanero, Sin. Un estudio socio ambiental, pesquero y acuícola. Hidrobiológica 1:1–27Google Scholar
  12. Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE (1995) Guía FAO para la identificación de especies para los fines de la pesca: Pacífico centro-oriental. FAO, RomeGoogle Scholar
  13. Fishbase (2017) www.fishbase.org. Accessed 1 Dec 2017
  14. Flores-Verdugo F, González-Farías F, Ramírez-Flores O, Amezcua-Linares F, Yáñez-Arancibia A, Álvarez-Rubio M, Day JW (1990) Mangrove ecology, aquatic primary productivity and fish community dynamics in the Teacapán-Agua Brava lagoon-estuarine system (Mexican Pacific). Estuaries 13:219–230.  https://doi.org/10.2307/1351591 CrossRefGoogle Scholar
  15. Furness RW, Rainbow PS (1990) Heavy metals in the marine environmental. CRC Press, Boca RatonGoogle Scholar
  16. Gil-Manrique B, Nateras-Ramírez O, Martínez-Salcido AI, Ruelas-Inzunza J, Páez-Osuna F, Amezcua F (2017) Cadmium and lead concentrations in hepatic and muscle tissue of demersal fish from three lagoon systems (SE Gulf of California). Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-8901-0 Google Scholar
  17. Harbison P (1986) Mangrove muds sink and a source for trace metals. Mar Pollut Bull 17:246–250.  https://doi.org/10.1016/0025-326X(86)90057-3 CrossRefGoogle Scholar
  18. Jakimska A, Konieczka P, Skóra K, Namiesnik J (2011) Bioaccumulation of metals in tissues of marine animals, part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20(5):1117–1125Google Scholar
  19. Khoshnamvand M, Kaboodvandpour S, Ghiasi F (2013) A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Gheshlagh Reservoir in Iran. Chemosphere 90:1236–1241.  https://doi.org/10.1016/j.chemosphere.2012.09.061 CrossRefGoogle Scholar
  20. Kojadinovic J, Potier M, Corre ML, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146(2):548–566.  https://doi.org/10.1016/j.envpol.2006.07.015 CrossRefGoogle Scholar
  21. Kwaśniak J, Falkowska L (2012) Mercury distribution in muscles and internal organs of the juvenile and adult Baltic cod (Gadus morrhua callarias Linnaeus, 1758). Oceanol Hydrobiol Stud 41(2):65–71.  https://doi.org/10.2478/s13545-012-0018-y Google Scholar
  22. López Jiménez LN, González Solis A, Torruco D (2014) Peces bentónicos y demersales de la Sonda de Campeche: sur del Golfo de México. CONABIO. Biodiversitas 113:12–16Google Scholar
  23. Luoma SN, Rainbow P (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39(7):1921–1931.  https://doi.org/10.1021/es048947e CrossRefGoogle Scholar
  24. Marcus AC, Okoye CO, Ibeto CN (2013) Bioaccumulation of trace metals in shellfish and fish of Bonny River and creeks around Okrika in Rivers State, Nigeria, Nigeria. Bull Environ Contam Toxicol 90(6):708–713.  https://doi.org/10.1007/s00128-013-0992-9 CrossRefGoogle Scholar
  25. Mieiro CL, Coelho JP, Pacheco M, Duarte AC, Pereira ME (2012) Evaluation of species-specific dissimilarities in two marine fish species: mercury accumulation as a function of metal levels in consumed prey. Arch Environ Contam Toxicol 63(1):125–136.  https://doi.org/10.1007/s00244-011-9740-5 CrossRefGoogle Scholar
  26. Montaño-Ley Y, Carbajal N, Páez-Osuna F (2015) Sediment dynamics in a complex coastal lagoon system of the Gulf of California. J Coast Conserv 19(3):295–306.  https://doi.org/10.1007/s11852-015-0391-y CrossRefGoogle Scholar
  27. Moody JR, Lindstrom RN (1977) Selection and cleaning of plastic containers for age of trace element samples. Anal Chem 49:2264–2267CrossRefGoogle Scholar
  28. Moyle PB, Cech JJ (2000) Fishes: an introduction to ichthyology. Prentice-Hall, Saddle RiverGoogle Scholar
  29. Newman MC, Unger MA (2002) Fundamentals of Ecotoxicology. Lewis Publishers, Boca RatonGoogle Scholar
  30. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47–49.  https://doi.org/10.1038/338047a0 CrossRefGoogle Scholar
  31. Osuna-López JI, Zazueta-Padilla H, Frías-Espericueta M, Izaguirre-Fierro G, López-López G (1997) Metales pesados en sedimentos superficiales del sistema Arroyo Jabalines-Estero del Infiernillo, Mazatlán, Sinaloa, México. Revista de Ciencias del Mar UAS 15:43–49Google Scholar
  32. Páez-Osuna F, Montaño-Ley Y, Bojórquez-Leyva H (1990) Intercambio de agua, fósforo y material suspendido entre el sistema lagunar del puerto de Mazatlán y las lagunas costeras adyacentes. Rev Int Contam Ambient 6:19–32Google Scholar
  33. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964.  https://doi.org/10.5194/acp-10-5951-2010 CrossRefGoogle Scholar
  34. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4–12):183–192.  https://doi.org/10.1016/0025-326X(95)00116-5 CrossRefGoogle Scholar
  35. Reimer AA, Reimer RD (1975) Total mercury in some fish and shellfish along the Mexican coast. Bull Environ Contam Toxicol 14(1):105–111CrossRefGoogle Scholar
  36. Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65(3):514–527CrossRefGoogle Scholar
  37. Ruelas-Inzunza J, Meza-Lópeza G, Páez-Osuna F (2008) Mercury in fish that are of dietary importance from the coasts of Sinaloa (SE Gulf of California). J Food Compos Anal 21:211–218.  https://doi.org/10.1016/j.jfca.2007.11.004 CrossRefGoogle Scholar
  38. Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bull Environ Contam Toxicol 74:294–300.  https://doi.org/10.1007/s00128-004-0583-x CrossRefGoogle Scholar
  39. Ruelas-Inzunza J, Páez-Osuna F, Zamora-Arellano N, Amezcua-Martínez F, Bojórquez-Leyva H (2009) Mercury in biota and surficial sediments from Coatzacoalcos estuary, Gulf of Mexico: distribution and seasonal variation. Water Air Soil Pollut 197:165–174.  https://doi.org/10.1007/s11270-008-9799-4 CrossRefGoogle Scholar
  40. Ruiz-Fernández AC, Frignani M, Hillaire-Marcel C, Ghaleb B, Arvizu MD, Raygoza-Viera JR, Páez-Osuna F (2009) Trace metals (Cd, Cu, Hg, and Pb) accumulation recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California, Mexico. Estuaries Coasts 32:551–564.  https://doi.org/10.1007/s12237-009-9150-3 CrossRefGoogle Scholar
  41. Soto-Jiménez MF, Páez-Osuna F (2001a) Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlan Harbor (SE Gulf of California). Estuar Coast Shelf Sci 53(3):259–274.  https://doi.org/10.1006/ecss.2000.0814 CrossRefGoogle Scholar
  42. Soto-Jiménez M, Páez-Osuna F (2001b) Cd, Cu, Pb, and Zn in lagoonal sediments from Mazatlán harbor (SE Gulf of California): bioavailability and geochemical fractioning. Bull Environ Contam Toxicol 66(3):350–356.  https://doi.org/10.1007/s00128-001-0012-3 CrossRefGoogle Scholar
  43. Soto-Jiménez MF, Páez-Osuna F (2008) Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractions. Appl Geochem 23(5):1202–1217.  https://doi.org/10.1016/j.apgeochem.2007.11.011 CrossRefGoogle Scholar
  44. Storelli MM, Giacominelli-Stuffler R, Storelli A, Marcotrigiano GO (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50(9):1004–1007.  https://doi.org/10.1016/j.marpolbul.2005.06.041 CrossRefGoogle Scholar
  45. UNEP/FAO/IOC/IAEA (1993) Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference methods for marine pollution studies No. 6. UNEP, MonacoGoogle Scholar
  46. US EPA—United States Environmental Protection Agency (2014) IRIS—integrated risk information system. http://www.usepa.gov/iris. Accessed 10 May 2016
  47. Vàzquez F, Florville-Alejandre TR, Herrera M, Díaz de León LM (2008) Heavy metals in muscular tissue of the catfish, ariopsis felis, in the southern Gulfof México (2001–2004). Lat Am J Aquat Res 36:223–233.  https://doi.org/10.4067/S0718-560X2008000200005 CrossRefGoogle Scholar
  48. Wang X, Lia Y-F, Lia B, Dongc Z, Quc L, Gaoa X, Chaia Z, Chen C (2011) Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Appl Geochem 26:182–187.  https://doi.org/10.1016/j.apgeochem.2010.11.017 CrossRefGoogle Scholar
  49. Yabanli M, Alparslan Y (2015) Potential health hazard assessment in terms of some heavy metals determined in demersal fishes caught in eastern Aegean Sea. Bull Environ Contam Toxicol 95:494–498.  https://doi.org/10.1007/s00128-015-1584-7 CrossRefGoogle Scholar
  50. Yáñez-Arancibia A, Lara-Domínguez AL (1988) Ecology of three sea catfishes (Ariidae) in a tropical coastal ecosystem, southern Gulf of Mexico. Mar Ecol Progr Ser 49(3):215–230CrossRefGoogle Scholar
  51. Zetina-Rejón RM, Arreguín SF, Chávez E (2003) Trophic structure and flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of Mexico. Estuar Coast Shelf Sci 57:803–815.  https://doi.org/10.1016/S0272-7714(02)00410-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. I. Martínez-Salcido
    • 1
  • J. Ruelas-Inzunza
    • 2
  • B. Gil-Manrique
    • 1
  • O. Nateras-Ramírez
    • 1
  • F. Amezcua
    • 3
  1. 1.Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MexicoMexicoMexico
  2. 2.Technological Institute of MazatlánMazatlánMexico
  3. 3.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MexicoMazatlánMexico

Personalised recommendations