Serum Concentrations of New Predictive Cardiovascular Disease Biomarkers in Mexican Women Exposed to Lead

  • Ángeles C. Ochoa-Martínez
  • Elvia D. Cardona-Lozano
  • Leticia Carrizales-Yáñez
  • Iván N. Pérez-Maldonado
Article

Abstract

The purpose of this study was to evaluate lead exposure and its relationship with serum levels of predictive CVD biomarkers [asymmetric dimethylarginine (ADMA), adipocyte fatty acid-binding protein (FABP4), adiponectin, and chemerin] in women living in San Luis Potosi, Mexico. A mean blood lead level (BLL) of 11.5 ± 9.00 μg/dL (mean ± standard deviation) was found after all blood samples were analyzed. Regarding serum predictive CVD biomarkers, mean serum level of 0.68 ± 0.38 μmol/L, 20.5 ± 16.5 ng/mL, 12.5 ± 3.30 μg/mL, and 255 ± 130 ng/mL were found for ADMA, FABP4, adiponectin, and chemerin, respectively. Simple significant associations (Pearson´s correlations) between BLL and ADMA (r = 0.17; p = 0.04) and FABP4 (r = 0.23; p = 0.03) were found. Furthermore, a multivariate linear regression model showed that BLL was a significant predictor of serum ADMA (β = 0.06; p = 0.001) and FABP4 (β = 1.75; p = 0.0004) concentrations after adjusting by confounders. For serum chemerin and adiponectin levels, no associations were found with BLL. In conclusion, high serum ADMA and FABP4 (predictive CVD biomarkers) levels were found in women exposed to lead. Consequently, this research can be used as a point of departure for the prevention of CVD events in populations living in sites environmentally impacted with lead.

Notes

Acknowledgements

This work was supported by CONACyT (Grant CONACyT- PDCPN2015-1558 and Fondo Sectorial SEMARNAT–CONACYT-249421). Special Thanks to Miss Laura Carmen Martinez for English language editing.

Compliance with Ethical Standards

Conflict of interest

The authors report no declaration of interest.

References

  1. Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol 2011:870125.  https://doi.org/10.1155/2011/870125 CrossRefGoogle Scholar
  2. Arbuckle TE, Liang CL, Morisset A-S et al (2016) Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere 163:270–282.  https://doi.org/10.1016/j.chemosphere.2016.08.023 CrossRefGoogle Scholar
  3. Bao Y, Lu Z, Zhou M et al (2011) Serum levels of adipocyte fatty acid-binding protein are associated with the severity of coronary artery disease in Chinese women. PLoS ONE 6:e19115.  https://doi.org/10.1371/journal.pone.0019115 CrossRefGoogle Scholar
  4. Barquera S, Campos-Nonato I, Hernández-Barrera L et al (2013) Prevalencia de obesidad en adultos mexicanos, ENSANUT 2012. Salud Publica Mex 55:151–160CrossRefGoogle Scholar
  5. Baum C, Johannsen SS, Zeller T et al (2016) ADMA and arginine derivatives in relation to non-invasive vascular function in the general population. Atherosclerosis 244:149–156.  https://doi.org/10.1016/j.atherosclerosis.2015.10.101 CrossRefGoogle Scholar
  6. Becker K, Schroeter-Kermani C, Seiwert M et al (2013) German health-related environmental monitoring: assessing time trends of the general population’s exposure to heavy metals. Int J Hyg Environ Health 216:250–254.  https://doi.org/10.1016/j.ijheh.2013.01.002 CrossRefGoogle Scholar
  7. Böger RH, Maas R, Schulze F, Schwedhelm E (2009a) Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality—an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 60:481–487.  https://doi.org/10.1016/j.phrs.2009.07.001 CrossRefGoogle Scholar
  8. Böger RH, Sullivan LM, Schwedhelm E et al (2009b) Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119:1592–1600CrossRefGoogle Scholar
  9. Borja-Aburto VH, Hertz-Picciotto I, Rojas Lopez M et al (1999) Blood lead levels measured prospectively and risk of spontaneous abortion. Am J Epidemiol 150:590–597CrossRefGoogle Scholar
  10. Bouras G, Deftereos S, Tousoulis D et al (2013) Asymmetric dimethylarginine (ADMA): a promising biomarker for cardiovascular disease? Curr Top Med Chem 13:180–200CrossRefGoogle Scholar
  11. Braun JM, Wright RJ, Just AC et al (2014) Relationships between lead biomarkers and diurnal salivary cortisol indices in pregnant women from Mexico City: a cross-sectional study. Environ Health 13:50.  https://doi.org/10.1186/1476-069X-13-50 CrossRefGoogle Scholar
  12. Burroughs Pena MS, Rollins A (2017) Environmental exposures and cardiovascular disease: a challenge for health and development in low- and middle-income countries. Cardiol Clin 35:71–86.  https://doi.org/10.1016/j.ccl.2016.09.001 CrossRefGoogle Scholar
  13. Černá M, Krsková A, Čejchanová M, Spěváčková V (2012) Human biomonitoring in the Czech Republic: an overview. Int J Hyg Environ Health 215:109–119.  https://doi.org/10.1016/j.ijheh.2011.09.007 CrossRefGoogle Scholar
  14. Choi W, Kim S, Baek Y-W et al (2016) Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012–2014). Int J Hyg Environ Health.  https://doi.org/10.1016/j.ijheh.2016.10.002 Google Scholar
  15. Chow WS, Tso AWK, Xu A et al (2013) Elevated circulating adipocyte-fatty acid binding protein levels predict incident cardiovascular events in a community-based cohort: a 12-year prospective study. J Am Heart Assoc 2:e004176.  https://doi.org/10.1161/JAHA.112.004176 CrossRefGoogle Scholar
  16. Diaz-Barriga F, Santos MA, Mejia JJ et al (1993) Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico. Environ Res 62:242–250CrossRefGoogle Scholar
  17. Estrada-Sanchez D, Ericson B, Juarez-Perez CA et al (2017) Intelligence quotient loss in Mexican pottery artisan’s children. Rev Med Inst Mex Seguro Soc 55:292–299Google Scholar
  18. Furuhashi M, Ishimura S, Ota H et al (2011) Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS ONE 6:e27356.  https://doi.org/10.1371/journal.pone.0027356 CrossRefGoogle Scholar
  19. Furuhashi M, Saitoh S, Shimamoto K, Miura T (2014) Fatty acid-binding protein 4 (FABP4): pathophysiological Insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin Med Insights Cardiol 8:23–33.  https://doi.org/10.4137/CMC.S17067 Google Scholar
  20. Gambelunghe A, Sallsten G, Borne Y et al (2016) Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ Res 149:157–163.  https://doi.org/10.1016/j.envres.2016.05.015 CrossRefGoogle Scholar
  21. Garrido Latorre F, Hernandez-Avila M, Tamayo Orozco J et al (2003) Relationship of blood and bone lead to menopause and bone mineral density among middle-age women in Mexico City. Environ Health Perspect 111:631–636CrossRefGoogle Scholar
  22. Hao Y, Ma X, Luo Y et al (2014) Serum adipocyte fatty acid binding protein levels are positively associated with subclinical atherosclerosis in Chinese pre- and postmenopausal women with normal glucose tolerance. J Clin Endocrinol Metab 99:4321–4327.  https://doi.org/10.1210/jc.2014-1832 CrossRefGoogle Scholar
  23. Hsu C-P, Lin S-J, Chung M-Y, Lu T-M (2012) Asymmetric dimethylarginine predicts clinical outcomes in ischemic chronic heart failure. Atherosclerosis 225:504–510.  https://doi.org/10.1016/j.atherosclerosis.2012.09.040 CrossRefGoogle Scholar
  24. Hsu C-P, Hsu P-F, Chung M-Y et al (2014) Asymmetric dimethylarginine and long-term adverse cardiovascular events in patients with type 2 diabetes: relation with the glycemic control. Cardiovasc Diabetol 13:156.  https://doi.org/10.1186/s12933-014-0156-1 CrossRefGoogle Scholar
  25. Iii ATP, Quick GA, Reference D (2001) ATP III guidelines At-A-glance quick desk reference. Natl Inst Heal 329:211.  https://doi.org/10.1016/j.bbrc.2005.02.046 Google Scholar
  26. Inan B, Ates I, Ozkayar N et al (2016) Are increased oxidative stress and asymmetric dimethylarginine levels associated with masked hypertension? Clin Exp Hypertens 38:294–298.  https://doi.org/10.3109/10641963.2015.1089883 CrossRefGoogle Scholar
  27. James Pa, Oparil S, Carter BL et al (2013) 2014 evidence-based guideline for the management of high blood pressure in adults. JAMA 1097:1–14.  https://doi.org/10.1001/jama.2013.284427 Google Scholar
  28. Jasso-Pineda Y, Diaz-Barriga F, Yanez-Estrada L et al (2015) DNA damage in Mexican children living in high-risk contaminated scenarios. Sci Total Environ 518–519:38–48.  https://doi.org/10.1016/j.scitotenv.2015.02.073 CrossRefGoogle Scholar
  29. Kim S-A, Kim K-S, Lee Y-M et al (2015) Associations of organochlorine pesticides and polychlorinated biphenyls with total, cardiovascular, and cancer mortality in elders with differing fat mass. Environ Res 138:1–7.  https://doi.org/10.1016/j.envres.2015.01.021 CrossRefGoogle Scholar
  30. Krzyzanowska K, Mittermayer F, Wolzt M, Schernthaner G (2007) Asymmetric dimethylarginine predicts cardiovascular events in patients with type 2 diabetes. Diab Care 30:1834–1839.  https://doi.org/10.2337/dc07-0019 CrossRefGoogle Scholar
  31. La-Llave-Leon O, Lugo-Soto R, Aguilar-Duran M et al (2015) Relationship between blood lead levels and hematological indices in pregnant women. Women Health 55:90–102.  https://doi.org/10.1080/03630242.2014.972019 CrossRefGoogle Scholar
  32. La-Llave-León O, Estrada-Martínez S, Manuel Salas-Pacheco J et al (2011) Blood lead levels and risk factors in pregnant women from durango, Mexico. Arch Environ Occup Health 66:107–113.  https://doi.org/10.1080/19338244.2010.511311 CrossRefGoogle Scholar
  33. Leong T, Zylberstein D, Graham I et al (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-Year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28:961–967.  https://doi.org/10.1161/ATVBAHA.107.156596 CrossRefGoogle Scholar
  34. Ljunggren SA, Helmfrid I, Salihovic S et al (2014) Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int 65:93–99.  https://doi.org/10.1016/j.envint.2013.12.017 CrossRefGoogle Scholar
  35. Lluch P, Segarra G, Medina P (2015) Asymmetric dimethylarginine as a mediator of vascular dysfunction in cirrhosis. World J Gastroenterol 21:9466–9475.  https://doi.org/10.3748/wjg.v21.i32.9466 CrossRefGoogle Scholar
  36. Lu T-M, Chung M-Y, Lin M-W et al (2011) Plasma asymmetric dimethylarginine predicts death and major adverse cardiovascular events in individuals referred for coronary angiography. Int J Cardiol 153:135–140.  https://doi.org/10.1016/j.ijcard.2011.06.120 CrossRefGoogle Scholar
  37. Lukkhananan P, Thawonrachat N, Srihirun S et al (2015) Endothelial dysfunction in subjects with chronic cadmium exposure. J Toxicol Sci 40:605–613.  https://doi.org/10.2131/jts.40.605 CrossRefGoogle Scholar
  38. Maeda S, Miyaki A, Kumagai H et al (2013) Lifestyle modification decreases arterial stiffness and plasma asymmetric dimethylarginine level in overweight and obese men. Coron Artery Dis 24:583–588.  https://doi.org/10.1097/MCA.0b013e3283647a99 CrossRefGoogle Scholar
  39. Mastin JP (2005) Environmental cardiovascular disease. Cardiovasc Toxicol 5:91–94CrossRefGoogle Scholar
  40. McCarty MF (2016) Asymmetric dimethylarginine is a well established mediating risk factor for cardiovascular morbidity and mortality—should patients with elevated levels be supplemented with citrulline? Healthc (Basel, Switzerland) 4:1–12.  https://doi.org/10.3390/healthcare4030040 Google Scholar
  41. NHANES IV (2009) Fourth national report on human exposure to environmental chemicals. Department of Health and Human Services Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  42. Nigra AE, Ruiz-Hernandez A, Redon J et al (2016) Environmental metals and cardiovascular disease in adults: a systematic review beyond lead and cadmium. Curr Environ Heal Rep 3:416–433.  https://doi.org/10.1007/s40572-016-0117-9 CrossRefGoogle Scholar
  43. Nisse C, Tagne-Fotso R, Howsam M et al (2017) Blood and urinary levels of metals and metalloids in the general adult population of Northern France: the IMEPOGE study, 2008–2010. Int J Hyg Environ Health 220:341–363.  https://doi.org/10.1016/j.ijheh.2016.09.020 CrossRefGoogle Scholar
  44. Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM et al (2016) Exposure assessment to environmental chemicals in children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Contam Toxicol 70:657–670.  https://doi.org/10.1007/s00244-016-0273-9 CrossRefGoogle Scholar
  45. Ochoa-Martinez AC, Ruiz-Vera T, Almendarez-Reyna CI et al (2017a) Influence on serum asymmetric dimethylarginine (ADMA) concentrations of human paraoxonase 1 polymorphism (Q192R) and exposure to polycyclic aromatic hydrocarbons (PAHs) in Mexican women, a gene-environment interaction. Chemosphere 186:770–779.  https://doi.org/10.1016/j.chemosphere.2017.08.055 CrossRefGoogle Scholar
  46. Ochoa-Martinez AC, Ruiz-Vera T, Orta-Garcia ST et al (2017b) Association between Q192R paraoxonase 1 polymorphism and serumadipocyte-fatty acid binding protein (FABP4) levels in Mexican women. Ann Hum Biol 44:389–391.  https://doi.org/10.1080/03014460.2016.1245785 CrossRefGoogle Scholar
  47. Ochoa-Martinez AC, Ruiz-Vera T, Pruneda-Alvarez LG et al (2017c) Serum adipocyte-fatty acid binding protein (FABP4) levels in women from Mexico exposed to polycyclic aromatic hydrocarbons (PAHs). Environ Sci Pollut Res Int 24:1862–1870.  https://doi.org/10.1007/s11356-016-7971-8 CrossRefGoogle Scholar
  48. Osorio-Yanez C, Ayllon-Vergara JC, Aguilar-Madrid G et al (2013) Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121:1090–1096.  https://doi.org/10.1289/ehp.1205994 Google Scholar
  49. Perez-Maldonado IN, Ochoa-Martinez AC, Orta-Garcia ST et al (2017) Concentrations of environmental chemicals in urine and blood samples of children from San Luis Potosi, Mexico. Bull Environ Contam Toxicol 99:258–263.  https://doi.org/10.1007/s00128-017-2130-6 CrossRefGoogle Scholar
  50. Perez-Vazquez MS, Ochoa-Martinez AC, RuIz-Vera T et al (2017) Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-017-0367-6 Google Scholar
  51. Prokopowicz A, Sobczak A, Szula-Chraplewska M et al (2016) Effect of occupational exposure to lead on new risk factors for cardiovascular diseases. Occup Environ Med.  https://doi.org/10.1136/oemed-2016-103996 Google Scholar
  52. Pruneda-Alvarez LG, Perez-Vazquez FJ, Ruiz-Vera T et al (2016a) Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment. Environ Sci Pollut Res Int 23:6816–6825.  https://doi.org/10.1007/s11356-015-5918-0 CrossRefGoogle Scholar
  53. Pruneda-Alvarez LG, Ruíz-Vera T, Ochoa-Martínez AC et al (2016b) Plasma asymmetric dimethylarginine (ADMA) levels in Mexican women exposed to polycyclic aromatic hydrocarbons (PAHs): a preliminary study. Sci Total Environ 572:1195–1202.  https://doi.org/10.1016/j.scitotenv.2016.08.037 CrossRefGoogle Scholar
  54. Pruneda-Álvarez LG, Pérez-Vázquez FJ, Salgado-Bustamante M et al (2012) Exposure to indoor air pollutants (polycyclic aromatic hydrocarbons, toluene, benzene) in Mexican indigenous women. Indoor Air 22:140–147.  https://doi.org/10.1111/j.1600-0668.2011.00750.x CrossRefGoogle Scholar
  55. Reiser H, Klingenberg R, Hof D et al (2015) Circulating FABP4 is a prognostic biomarker in patients with acute coronary syndrome but not in asymptomatic individuals. Arterioscler Thromb Vasc Biol 35:1872–1879.  https://doi.org/10.1161/ATVBAHA.115.305365 CrossRefGoogle Scholar
  56. Rodriguez-Calvo R, Girona J, Alegret JM et al (2017) Role of the fatty acid binding protein 4 in heart failure and cardiovascular disease. J Endocrinol.  https://doi.org/10.1530/JOE-17-0031 Google Scholar
  57. Ruiz-Vera T, Pruneda-Álvarez LG, Ochoa-Martínez ÁC et al (2015a) Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke. Environ Toxicol Pharmacol 40:423–429.  https://doi.org/10.1016/j.etap.2015.07.014 CrossRefGoogle Scholar
  58. Ruiz-Vera T, Pruneda-Alvarez LG, Perez-Vazquez FJ et al (2015b) Using urinary 1-hydroxypyrene concentrations to evaluate polycyclic aromatic hydrocarbon exposure in women using biomass combustion as main energy source. Drug Chem Toxicol 38:349–354.  https://doi.org/10.3109/01480545.2014.968932 CrossRefGoogle Scholar
  59. Schnabel R, Blankenberg S, Lubos E et al (2005) Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 97:e53–e59.  https://doi.org/10.1161/01.RES.0000181286.44222.61 CrossRefGoogle Scholar
  60. Schober SE, Mirel LB, Graubard BI et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114:1538–1541.  https://doi.org/10.1289/ehp.9123 Google Scholar
  61. Sciacqua A, Grillo N, Quero M et al (2012) Asymmetric dimethylarginine plasma levels and endothelial function in newly diagnosed type 2 diabetic patients. Int J Mol Sci 13:13804–13815.  https://doi.org/10.3390/ijms131113804 CrossRefGoogle Scholar
  62. Shibata R, Ouchi N, Ohashi K, Murohara T (2017) The role of adipokines in cardiovascular disease. J Cardiol.  https://doi.org/10.1016/j.jjcc.2017.02.006 Google Scholar
  63. Trejo-Acevedo A, Diaz-Barriga F, Carrizales L et al (2009) Exposure assessment of persistent organic pollutants and metals in Mexican children. Chemosphere 74:974–980.  https://doi.org/10.1016/j.chemosphere.2008.10.030 CrossRefGoogle Scholar
  64. Tripepi G, Mattace Raso F, Sijbrands E et al (2011) Inflammation and asymmetric dimethylarginine for predicting death and cardiovascular events in ESRD patients. Clin J Am Soc Nephrol 6:1714–1721.  https://doi.org/10.2215/CJN.11291210 CrossRefGoogle Scholar
  65. Tuuri AL, Jauhiainen MS, Tikkanen MJ, Kaaja RJ (2017) Systolic blood pressure and fatty acid-binding protein 4 predict pregnancy-induced hypertension in overweight nulliparous women. Placenta 35:797–801.  https://doi.org/10.1016/j.placenta.2014.07.016 CrossRefGoogle Scholar
  66. von Eynatten M, Breitling LP, Roos M et al (2012) Circulating adipocyte fatty acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease: a 10-year prospective study. Arterioscler Thromb Vasc Biol 32:2327–2335.  https://doi.org/10.1161/ATVBAHA.112.248609 CrossRefGoogle Scholar
  67. Yan Q, Zhang Y, Hong J et al (2012) The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 41:281–288.  https://doi.org/10.1007/s12020-011-9550-6 CrossRefGoogle Scholar
  68. Yanez L, Garcia-Nieto E, Rojas E et al (2003) DNA damage in blood cells from children exposed to arsenic and lead in a mining area. Environ Res 93:231–240CrossRefGoogle Scholar
  69. Yu H-P, Jen H-L, Yin W-H, Wei J (2017) Circulating adiponectin levels following treatment can predict late clinical outcomes in chronic heart failure. Acta Cardiol Sin 33:139–149Google Scholar
  70. Zaciragic A, Huskic J, Mulabegovic N et al (2014) An assessment of correlation between serum asymmetric dimethylarginine and glycated haemoglobin in patients with type 2 diabetes mellitus. Bosn J Basic Med Sci 14:21–24CrossRefGoogle Scholar
  71. Zeliger HI (2013) Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol 6:55–62.  https://doi.org/10.2478/intox-2013-0010 Google Scholar
  72. Zhang Y, Zhang H, Lu J et al (2016) Changes in serum adipocyte fatty acid-binding protein in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnancy. J Diabetes Investig 7:797–804.  https://doi.org/10.1111/jdi.12484 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT)Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Unidad Académica Multidisciplinaria Zona MediaUniversidad Autónoma de San Luis PotosíRio-VerdeMexico

Personalised recommendations