Skip to main content
Log in

The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

To investigate the effect of bisphenol A (BPA) on Cylindrospermopsis raciborskii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta), we grew the two species at BPA concentrations of 0, 0.1, 1, 2, 5, 10, and 20 mg/L and examined their growth, lipid peroxidation, antioxidant enzyme activity, and chlorophyll a fluorescence. The 96-h EC50 values (effective concentration causing 50% growth inhibition) for BPA in C. raciborskii and S. quadricauda were 9.663 ± 0.047, and 13.233 ± 0.069 mg/L, respectively. A significant reduction in chlorophyll a concentration was found in C. raciborskii and S. quadricauda when BPA concentrations were greater than 1 and 2 mg/L, respectively. Furthermore, F v/F m, ΔF/F m′, and qP decreased significantly at 10 mg/L BPA in C. raciborskii but started to decrease at 10 mg/L in S. quadricauda. The changes in chlorophyll fluorescence parameters (α, rETRmax) that were obtained from the rapid light response curves of both algae species showed similar responses to F v/F m, ΔF/F m′, and qP under BPA-induced stress. Values for all of the chlorophyll fluorescence parameters in S. quadricauda were higher than in C. raciborskii; however, the nonphotochemical quenching measured in C. raciborskii was considerably higher than it was in S. quadricauda. In addition, lipid peroxidation (determined as MDA content) and antioxidant enzyme activities (SOD and CAT) increased in both species as the BPA concentration increased. These results suggest that C. raciborskii is more sensitive to the effects of BPA than S. quadricauda and that photosystem II might be a target for the activity of BPA in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Hamid MI (1996) Development and application of a simple procedure for toxicity testing using immobilized algae. Water Sci Technol 33:129–138

    CAS  Google Scholar 

  • Adams III WW, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chloropyll fluorescence: a signature of photosynthesis. Springer, Netherlands, pp 583–604

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alexander HC, Dill DC, Smith LW, Guiney PD, Dorn P (1988) Bisphenol a: acute aquatic toxicity. Environ Toxicol Chem 7:19–26

    Article  CAS  Google Scholar 

  • Ali I, Liu B, Farooq MA, Islam F, Azizullah A (2015) Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Mandarin 124:277–284

    Google Scholar 

  • Ali I, Jan M, Wakeel A, Azizullah A, Liu B (2017) Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicol Environ Saf 144:62–71

    Article  CAS  Google Scholar 

  • An S, Mo Y, Ou C (2002) Probit analysis with SPSS 10.0 software. J First Mil Med Univ 22:1019–1022 (in Chinese)

    CAS  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Rao YS (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539

    Article  CAS  Google Scholar 

  • Baehrs H, Putschew A, Steinberg CEW (2013) Toxicity of hydroquinone to different freshwater phototrophs is;influenced by time of exposure and pH. Environ Sci Pollut Res 20:146–154

    Article  CAS  Google Scholar 

  • Bai F, Liu R, Yang Y, Ran X, Shi J, Wu Z (2014) Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium, Cylindrospermopsis raciborskii. Harmful Algae 39:112–120

    Article  CAS  Google Scholar 

  • Baumann HA, Morrison L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM-Chlorophyll fluorescencein seven species of marine macroalgae. Ecotoxicol Environ Saf 72:1063–1075

    Article  CAS  Google Scholar 

  • Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111:389–394

    Article  CAS  Google Scholar 

  • Bodin J, Bolling A, Samuelsen M, Becher R, Lovik M, Nygaard U (2013) Long-term bisphenol A exposureaccelerates insulitis development in diabetes-prone NOD mice. Immunopharmacol Immunotoxicol 35:349–358

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Calatayud A, Barreno E (2001) Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut 115:283–289

    Article  CAS  Google Scholar 

  • Chen HX, Gao HY, An S, Li WJ (2004) Dissipation of excess energy in Mehler-Peroxidase reaction in Rumex leaves during salt shock. Photosynthetica 42:117–122

    Article  CAS  Google Scholar 

  • Choo KS, Snoeijs P, Pedersén M (2004) Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. J Exp Mar Biol Ecol 298:111–123

    Article  CAS  Google Scholar 

  • Comerton AM, Andrews RC, Bagley DM, Yang P (2007) Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J Membr Sci 303:267–277

    Article  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Dodds EC, Lawson W (1936) Synthetic estrogenic agents without the phenanthrene nucleus. Nature 137:996

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    Article  CAS  Google Scholar 

  • Dyble J, Paer HW, Neilan BA (2002) Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Appl Environ Microbiol 68:2567–2571

    Article  CAS  Google Scholar 

  • Ebenezer V, Ki JS (2016) Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum. Korean J Microbiol 52:306–312

    Article  Google Scholar 

  • Fromme H, Küchler Otto T, Pilz K, Müller J (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  • Gao Y, Cui Y, Xiong W, Li X, Wu Q (2010) Effect of UV-C on algal evolution and differences in growth rate, pigmentation and photosynthesis between prokaryotic and eukaryotic algae. Photochem Photobiol 85:774–782

    Article  Google Scholar 

  • Gassman NR (2017) Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 58:60–71

    Article  CAS  Google Scholar 

  • Gattullo CE, Bährs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  CAS  Google Scholar 

  • Geoffroy L, Dewez D, Vernet G, Popovic R (2003) Oxyfluorfen toxic effect on Scenedesmus obliquus evaluated by different photosynthetic and enzymatic biomarkers. Arch Environ Contam Toxicol 45:445–452

    Article  CAS  Google Scholar 

  • Guo R, Ebenezer V, Ki JS (2012) Transcriptional responses of heat shock protein 70 (Hsp70) to thermal, bisphenol A, and copper stresses in the dinoflagellate Prorocentrum minimum. Chemosphere 89:512–520

    Article  CAS  Google Scholar 

  • Halliwell B, Buzadzić B, Spasic M, Saicić ZS, Saicić R (1990) Antioxidant defenses in the ground squirrel Citellus citellus. 1. A comparison with the rat. Free Radic Biol Med 9:401–406

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Thurston trimmed Spearman-Karber method for estimating median lethal concen-trations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • He J, Chee CW, Goh CJ (1996) “Photoinhibition” of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ 19:1238–1248

    Article  Google Scholar 

  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822

    CAS  Google Scholar 

  • Henley WJ (1993) On the measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonate-are view. Crit Rev Food Sci Nutr 3:386–402

    Article  Google Scholar 

  • Ichimura T (1979) Isolation and culture methods of algae. KyorituShuppan, Tokyo. (In Japanese without English title). pp 294–305

  • Kavlock R (1999) Overview of endocrine disruptor research activity in the United States. Chemosphere 39:1227–1236

    Article  CAS  Google Scholar 

  • Kim K, Park H (2013) Association between urinary concentration of bisphenol A and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int J Hyg Environ Health 216:467–471

    Article  CAS  Google Scholar 

  • Kim HS, Han SY, Yoo SD et al (2001) Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. Toxicol Sci 26:111–118

    Article  CAS  Google Scholar 

  • Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115:98–103

    Article  Google Scholar 

  • Krishnan AV, Starhis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    Article  CAS  Google Scholar 

  • Kulk G, Poll WHVD, Visser RJW, Buma AGJ (2011) Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. J Exp Mar Biol Ecol 398:63–72

    Article  Google Scholar 

  • Levy G, Lutz I, Kru¨ger A, Kloas W (2004) Bisphenol A induces feminization in Xenopus laevis tadpoles. Environ Res 94:102–111

    Article  CAS  Google Scholar 

  • Li R, Liu Y, Chen GZ, Tam NFY, Shin PKS, Cheng SG, Luan TG (2008) Physiological responses of the alga Cyclotella caspia to Bisphenol A exposure. Bot Mar 51(2):360–369

    CAS  Google Scholar 

  • Li R, Chen GZ, Tam NFY, Luan TG, Shin PKS (2009) Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf 72:321–328

    Article  CAS  Google Scholar 

  • Ma J, Lin F, Qin W, Wang P (2004) Differential response of four cyanobacterial and green algal species to triazophos, fentin acetate, and ethephon. Bull Environ Contam Toxicol 73:890–897

    Article  CAS  Google Scholar 

  • Maćczak A, Cyrkler M, Bukowska B, Michałowicz J (2017) Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicol In Vitro 41:143–149

    Article  Google Scholar 

  • Masojídek J, Grobbelaar JU, Pechar L, Koblízek M (2001) Photosystem electron transport rates and oxygen production in natural water blooms of freshwater cyanobacteria during a diel cycle. J Plankton Res 23:57–66

    Article  Google Scholar 

  • Massana R, Logares R (2013) Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol 15:1254–1261

    Article  Google Scholar 

  • Melzer D, Rice N, Lewis C, Henley W, Galloway T (2010) Associacion of urinary bisphenol A concentration with heartdisease: evidence from NHANES 2003/06. PLoS 5:8673

    Article  Google Scholar 

  • Miao A, Wang W, Juneau P (2005) Comparison of Cd, Cu, and Zn toxic effects on four marine phytoplankton by pulse-amplitude-modulated fluorometry. Environ Toxicol Chem 24:2603–2611

    Article  CAS  Google Scholar 

  • Michałowicz J (2014) Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758

    Article  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558

    Article  Google Scholar 

  • Murthy KNC, Vanitha A, Rajesha J et al (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina -a green microalga. Life Sci 76:1381–1390

    Article  CAS  Google Scholar 

  • Nusch EA (1980) Comparison of different methods for chlorophyll and pheopigment determination. Arch Hydrobiol Beiheft Ergebn Limnol 14:14–36

    CAS  Google Scholar 

  • Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca:Gastropoda) in the laboratory. Part I: bisphenol A and octylphenol as xeno-estrogens. Ecotoxicol 9:383–397

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Ran XF, Liu R, Xu S, Bai F, Xu J, Yang Y, Shi J, Wu Z (2015) Assessment of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity in Aphanizomenon flosaquae, Pediastrum simplex and Synedra acus exposed to cadmium. Ecotoxicology 24:46–177

    Article  Google Scholar 

  • Roháček K, Barták M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363

    Article  Google Scholar 

  • Sarchizian I, Ardelean II (2010) Axenic culture of a diazotrophic filamentous cyanobacterium isolated from mesothermal sulphurous springs (Obanul mare—Mangalia). Rom J Biol Plant Biol 55:47–53

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995a) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Springer, Berlin Heidelberg 100:49–70

    Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995b) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    Article  CAS  Google Scholar 

  • Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. Steroid Biochem Mol Biol 65:143–150

    Article  CAS  Google Scholar 

  • Staples CA, Dorn PB, Klecka GM et al (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Stephenson RR (1982) Aquatic toxicology of cypermethrin. I. Acute toxicity to some freshwater fish and invertebrates in laboratory tests. Aquat Toxicol 2:175–185

    Article  CAS  Google Scholar 

  • Tao S, Zhang Y, Yuan C, Gao J, Wu F (2016) Oxidative stress and immunotoxic effects of bisphenol A on the larvae of rare minnow Gobiocypris rarus. Ecotoxicol Environ Saf 124:377–385

    Article  CAS  Google Scholar 

  • Tišler T, Krel A, Gerželj U, Erjavec B, Dolenc MS (2016) Hazard identification and risk characterization of bisphenols A, F, and AF to aquatic organisms. Environ Pollut 212:472–479

    Article  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Chem 86:271–278

    CAS  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    Article  CAS  Google Scholar 

  • Wakabayashi K, Böger P (1999) General physiological characteristics and mode of action of peroxidizing herbicides. In: Böger P, Wakabayashi K (eds) Peroxidizing herbicides. Springer-Verlag, Berlin, Germany, pp 163–190

  • Wang ZC, Li DH, Li GW, Liu YD (2010) Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus. Harmful Algae 9:613–619

    Article  CAS  Google Scholar 

  • Wang Q, Wang L, Han R, Yang L, Zhou Q (2015) Effects of bisphenol A on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34:1127–1133

    Article  CAS  Google Scholar 

  • Weissman L, Garty J, Hochman A (2005) Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microbiol 71:6508–6514

    Article  CAS  Google Scholar 

  • Wu S, Shih MJ, Ho YC (2007) Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) uponcadmium exposure. Toxicol Phamarcol 145:218–226

    Google Scholar 

  • Wu Z, Song L, Li R (2008) Different tolerances and responses to low temperature and darkness between water bloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia 596:47–55

    Article  Google Scholar 

  • Wu Z, Shi JQ, Yang SQ (2013) The effect of pyrogallic acid on growth, oxidative stress, and gene expression in Cylindrospermopsis raciborskii (Cyanobacteria). Ecotoxicology 22:271–278

    Article  CAS  Google Scholar 

  • Yang C, Yu XJ, Wang XZ, Kong HN, Li YH (2014) Effects of bisphenol A on the growth and physiology of Microcystis aeruginosa. Saf Environ Eng 21:21–25 (in Chinese)

    Google Scholar 

  • Zhang W, Bang X, Wen FS, Shuai A, Kuang FL, Mei JG, Xin HC (2014) Acute and chronic toxic effects of bisphenol a on Chlorella pyrenoidosa and Scenedesmus obliquus. Environ Toxicol 29:714–722

    Article  CAS  Google Scholar 

  • Ziv-Gal A, Zelieann C, Wang W, Flaws J (2013) Bisphenol A inhibits cultured mouse ovarian follicle growth partially viathe aryl hydrocarbon receptor signaling pathway. Reprod Toxicol 42:58–67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundamental Research Funds for the Central Universities (XDJK2016C111, XDJK2017B010) and Natural Science Foundation Project of China SWU (SWNUB2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, R., Shi, J., Yu, Y. et al. The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda . Arch Environ Contam Toxicol 74, 515–526 (2018). https://doi.org/10.1007/s00244-017-0454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0454-1

Navigation