Skip to main content

Advertisement

Log in

Is oxidized low-density lipoprotein the connection between atherosclerosis, cardiovascular risk and nephrolithiasis?

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Nephrolithiasis is considered a systemic disease. A link has been established between nephrolithiasis, cardiovascular disease (CVD), the metabolic syndrome and atherosclerosis. A significant correlation has been found between the high levels of oxidized low-density lipoprotein (oxLDL) and CVD and atherosclerosis, including coronary and femoral artery disease. To the best of our knowledge, oxLDL has not been evaluated in patients with nephrolithiasis. This study aimed to evaluate serum levels of oxLDL, anti-oxLDL antibodies (oxLDL-ab) and other markers of atherosclerosis in patients with nephrolithiasis, according to the severity of the disease. The population sample consisted of 94 patients of 30–70 years of age with no symptoms of CVD who presented with renal calculi documented by ultrasonography, abdominal X-ray or computed tomography. The patients were divided into two groups: Group 1 (≥ 3 stones) and Group 2 (1–2 stones). A comparison control group was formed with 21 healthy individuals. Enzyme-linked immunosorbent assays were used to assess oxLDL and oxLDL-ab. Lipid peroxidation indexes were also analyzed. Median serum oxLDL values were higher in Groups 1 and 2 compared to the control group (≥ 3 stones, p = 0.02; 1–2 stones, p = 0.03). Median serum anti-oxLDL antibody levels were lower in the patients in Group 1 compared to the controls (p = 0.03). There was no significant difference in the oxLDL/oxLDL-ab ratio between patients and controls. These findings suggest that this may be the link between nephrolithiasis and the greater incidence of atherosclerosis and cardiovascular disease in patients with kidney stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112. https://doi.org/10.1007/s00240-011-0448-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Khan SR, Canales BK (2015) Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl 1):109–123. https://doi.org/10.1007/s00240-014-0705-9

    Article  CAS  PubMed  Google Scholar 

  3. Shoag J, Tasian GE, Goldfarb DS, Eisner BH (2015) The new epidemiology of nephrolithiasis. Adv Chronic Kidney Dis 22:273–278. https://doi.org/10.1053/j.ackd.2015.04.004

    Article  PubMed  Google Scholar 

  4. Pfau A, Knauf F (2016) Update on nephrolithiasis: core curriculum 2016. Am J Kidney Dis 68:973–985. https://doi.org/10.1053/j.ajkd.2016.05.016

    Article  PubMed  Google Scholar 

  5. Wong YV, Cook P, Somani BK (2015) The association of metabolic syndrome and urolithiasis. Int J Endocrinol 2015:570674. https://doi.org/10.1155/2015/570674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Worcester EM, Coe FL (2010) Clinical practice. Calcium kidney stones. N Engl J Med 363:954–963. https://doi.org/10.1056/NEJMcp1001011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sakhaee K, Maalouf NM, Sinnott B (2012) Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97:1847–1860. https://doi.org/10.1210/jc.2011-3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gambaro G, Trinchieri A (2016) Recent advances in managing and understanding nephrolithiasis/nephrocalcinosis. F1000Res. https://doi.org/10.12688/f1000research.7126.1

    Article  PubMed Central  PubMed  Google Scholar 

  9. Johri N, Cooper B, Robertson W, Choong S, Rickards D, Unwin R (2010) An update and practical guide to renal stone management. Nephron Clin Pract 116:c159–c171. https://doi.org/10.1159/000317196

    Article  PubMed  Google Scholar 

  10. Jeong IG, Kang T, Bang JK, Park J, Kim W, Hwang SS, Kim HK, Park HK (2011) Association between metabolic syndrome and the presence of kidney stones in a screened population. Am J Kidney Dis 58:383–388. https://doi.org/10.1053/j.ajkd.2011.03.021

    Article  PubMed  Google Scholar 

  11. Hamano S, Nakatsu H, Suzuki N, Tomioka S, Tanaka M, Murakami S (2005) Kidney stone disease and risk factors for coronary heart disease. Int J Urol 12:859–863. https://doi.org/10.1111/j.1442-2042.2005.01160.x

    Article  PubMed  Google Scholar 

  12. Gambaro G, Ferraro PM, Capasso G (2012) Calcium nephrolithiasis, metabolic syndrome and the cardiovascular risk. Nephrol Dial Transpl 27:3008–3010. https://doi.org/10.1093/ndt/gfs139

    Article  Google Scholar 

  13. Ramaswamy K, Shah O (2014) Metabolic syndrome and nephrolithiasis. Transl Androl Urol 3:285–295. https://doi.org/10.3978/j.issn.2223-4683.2014.06.03

    Article  PubMed Central  PubMed  Google Scholar 

  14. Joshi S, Peck AB, Khan SR (2013) NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxid Med Cell Longev 2013:462361. https://doi.org/10.1155/2013/462361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Khan SR (2014) Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol 3:256–276. https://doi.org/10.3978/j.issn.2223-4683.2014.06.04

    Article  PubMed Central  PubMed  Google Scholar 

  16. Chung HJ (2014) The role of Randall plaques on kidney stone formation. Transl Androl Urol 3:251–254. https://doi.org/10.3978/j.issn.2223-4683

    Article  PubMed Central  PubMed  Google Scholar 

  17. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160. https://doi.org/10.1007/s00240-010-0271-8

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bagga HS, Chi T, Miller J, Stoller ML (2013) New insights into the pathogenesis of renal calculi. Urol Clin N Am 40:1–12. https://doi.org/10.1016/j.ucl.2012.09.006

    Article  Google Scholar 

  19. Shavit L, Girfoglio D, Vijav V, Goldsmith D, Ferraro PM, Moochhala SH, Unwin R (2015) Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin J Am Soc Nephrol 10:278–285. https://doi.org/10.2215/CJN.06030614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S, Klarenbach SW, Curhan GC, Tonelli M, Alberta Kidney Disease Network (2014) Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol 9:506–512. https://doi.org/10.2215/CJN.04960513

    Article  PubMed  Google Scholar 

  21. Ferraro PM, Tylor EN, Eisner BH, Gambaro G, Rimm EB, Mukamal KJ, Curhan GC (2013) History of kidney stones and the risk of coronary heart disease. JAMA 310:408–415. https://doi.org/10.1001/jama.2013.8780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rule AD, Roger VL, Melton LJ 3rd, Bergstralh EJ, Li X, Peyser PA, Krambeck AE, Lieske JC (2010) Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol 10:1641–1644. https://doi.org/10.1681/ASN.2010030253

    Article  Google Scholar 

  23. Eisner BH, Cooperberg MR, Curhan GC et al (2007) Nephrolithiasis and the risk of cardiovascular disease. J Urol 177:449

    Article  Google Scholar 

  24. Reiner AP, Khan A, Eisner BH, Pletcher MJ, Sadetsky N, Dale Williams O, Polak JF, Jacobs DR, Stoller ML (2011) Kidney stones and subclinical atherosclerosis in young adults: Coronary Artery Risk Development in Young Adults (CARDIA) study. J Urol. https://doi.org/10.1016/j.juro.2010.10.086

    Article  PubMed Central  PubMed  Google Scholar 

  25. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811. https://doi.org/10.1016/j.juro.2012.05.078

    Article  CAS  PubMed  Google Scholar 

  26. Rafleian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5:927–946

    Google Scholar 

  27. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  28. Wang T, Palucci D, Law K, Yanagawa B, Yam J, Butany J (2012) Atherosclerosis: pathogenesis and pathology. Diagn Histopathol 18:461–467. https://doi.org/10.1016/j.mpdhp.2012.09.004

    Article  Google Scholar 

  29. Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890. https://doi.org/10.1161/hq1201.100220

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Song L, Wu S, Fan F, Lopes-Virella MF (2001) Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis 156:119–125. https://doi.org/10.1016/S0021-9150(00)00638-9

    Article  CAS  PubMed  Google Scholar 

  31. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569

    CAS  Google Scholar 

  32. Duarte M, Moresco RN, Bem AF (2008) [Assays for measurement of oxidized low-density lipoprotein and its application as a marker of cardiovascular risk]. Rev Bras Anal Clin 40:101–106

    Google Scholar 

  33. Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL (2003) Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndrome. J Am Coll Cardiol 41:360–370. https://doi.org/10.1016/S0735-1097(02)02769-9

    Article  CAS  PubMed  Google Scholar 

  34. Goyal T, Mitra S, Khaidakov M, Wang X, Singla S, Ding Z, Liu S, Mehta JL (2012) Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr Atheros Rep 14:150–159. https://doi.org/10.1007/s11883-012-0228-1

    Article  CAS  Google Scholar 

  35. Trpkovic A, Resanovic I, Stanimirovic J, Radak D, Mousa SA, Cenic-Milosevic D, Jevremovic D, Isenovic ER (2015) Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit Rev Clin Lab Sci 52:70–85. https://doi.org/10.3109/10408363.2014.992063

    Article  CAS  PubMed  Google Scholar 

  36. Linna M, Ahotupa M, Löppönen MK, Irjala K, Vasnkari T (2013) Circulating oxidized LDL lipids, when proportioned to HDL-c, emerged as a risk factor of all-cause mortality in a population-based survival study. Age Ageing 42:110–113. https://doi.org/10.1093/ageing/afs074

    Article  PubMed  Google Scholar 

  37. Santos AO, Fonseca FA, Fisher SM, Monteiro CM, Brandão SA, Póvoa RM, Bombig MT, Carvalho AC, Monteiro AM, Ramos E, Gidlund M, Figueiredo Neto AM, Izar MC (2009) High circulating autoantibodies against human oxidized low-density lipoprotein are related to stable and lower titers to unstable clinical situation. Clin Chim Acta 406:113–118. https://doi.org/10.1016/j.cca.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  38. Medeiros AM, Von Mühlen CA, Gidlund MA, Bodanese R, Gottlieb MG, Bodanese LC (2010) Antibodies against oxLDL and acute coronary syndrome. Arq Bras Cardiol 95:47–54. https://doi.org/10.1590/S0066-782X2010005000063

    Article  PubMed  Google Scholar 

  39. Nowak B, Szmyrka-Kaczmarek M, Durazińska A, Plaksej R, Borysewicz K, Korman L, Wiland P (2012) Anti-ox-LDL antibodies and anti-ox-LDL-B2GPI antibodies in patients with systemic lupus erythematosus. Adv Clin Exp Med 21:331–335

    PubMed  Google Scholar 

  40. Hasna A, Meiyappan K, Periyasam SG, Kalyaperumal M, Bobby Z, Subramaniam AV (2015) Is urolithiasis associated with increased levels of high sensitivity C-reactive protein and interleukin-6 in diabetic patients? J Clin Diagn Res 9:BC01–BC03. https://doi.org/10.7860/JCDR/2015/12489.5681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yencilek E, Sari H, Yencilek F, Yeşil E, Aydın H (2017) Systemic endothelial function measured by flow-mediated dilation is impaired in patients with urolithiasis. Urolithiasis 45:545–552. https://doi.org/10.1007/s00240-016-0941-2

    Article  PubMed  Google Scholar 

  42. Girona J, Manzanares JM, Marimón F, Cabré A, Heras M, Guardiola M, Ribalta J, Masana L (2008) Oxidized to non-oxidized lipoprotein ratios are associated with arteriosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis 18:380–387. https://doi.org/10.1016/j.numecd.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  43. Kim S, Chang Y, Sung E, Kang JG, Yun KE, Jung HS, Hyun YY, Lee KB, Joo KJ, Shin H, Ryu S (2018) Association between sonographically diagnosed nephrolithiasis and subclinical coronary artery calcification in adults. Am J Kidney Dis 71:35–41. https://doi.org/10.1053/j.ajkd.2017.06.026

    Article  PubMed  Google Scholar 

  44. Smith-Bindman R, Aubin C, Bailitz J et al (2014) Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med 371:1100–1110. https://doi.org/10.1056/NEJMoa1404446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the translational research laboratory, Instituto de Medicina Integral Prof. Fernando Figueira for their support in the analysis.

Funding

This study was funded by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE; Grant no. APQ-351-4.01/11).

Author information

Authors and Affiliations

Authors

Contributions

ACPF conceived the original idea for the study, provided intellectual content and reviewed the manuscript. MCM contributed to the analysis of the ELISA findings. LCT and MCMBD contributed to the development of the study protocol and were involved in the evaluation and interpretation of the results and in the preparation of the manuscript. DEC and NS provided intellectual content of critical importance to the work.

Corresponding author

Correspondence to Augustus Cesar Pinto de Freitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the 1964 Helsinki declaration. The internal review board of the Instituto de Medicina Integral Prof. Fernando Figueira approved the study protocol under reference number CAAE 21614613.0.0000.5201.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

In memoriam: Nestor Schor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, A.C.P., Torres, L.C., Duarte, M.d.M.B. et al. Is oxidized low-density lipoprotein the connection between atherosclerosis, cardiovascular risk and nephrolithiasis?. Urolithiasis 47, 347–356 (2019). https://doi.org/10.1007/s00240-018-1082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1082-6

Keywords

Navigation