Skip to main content

Advertisement

Log in

In vitro feasibility of next generation non-linear beamforming ultrasound methods to characterize and size kidney stones

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Ultrasound imaging for kidney stones suffers from poorer sensitivity, diminished specificity, and overestimation of stone size compared to computed tomography (CT). The purpose of this study was to demonstrate in vitro feasibility of novel ultrasound imaging methods comparing traditional B-mode to advanced beamforming techniques including plane wave synthetic focusing (PWSF), short-lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with incoherent compounding, and aperture domain model image reconstruction (ADMIRE). The ultrasound techniques were evaluated using a research-based ultrasound system applied to an in vitro kidney stone model at 4 and 8 cm depths. Stone diameter sizing and stone contrast were compared among the different techniques. Analysis of variance was used to analyze the differences among group means, with p < 0.05 considered significant, and a Student’s t test was used to compare each method with B-mode, with p < 0.0025 considered significant. All stones were detectable with each method. MLSC performed best with stone sizing and stone contrast compared to B-mode. On average, B-mode sizing error ± SD was > 1 mm (1.2 ± 1.1 mm), while those for PWSF, ADMIRE, and MLSC were < 1 mm (− 0.3 ± 2.9 mm, 0.6 ± 0.8, 0.8 ± 0.8, respectively). Subjectively, MLSC appeared to suppress the entire background thus highlighting only the stone. The ADMIRE and SLSC techniques appeared to highlight the stone shadow relative to the background. The detection and sizing of stones in vitro are feasible with advanced beamforming methods with ultrasound. Future work will include imaging stones at greater depths and evaluating the performance of these methods in human stone formers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America P (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165. https://doi.org/10.1016/j.eururo.2012.03.052

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bryant M, Angell J, Tu H, Goodman M, Pattaras J, Ogan K (2012) Health related quality of life for stone formers. J Urol 188(2):436–440. https://doi.org/10.1016/j.juro.2012.04.015

    Article  PubMed  Google Scholar 

  3. Pearle MS, Calhoun EA, Curhan GC, Urologic Diseases of America P (2005) Urologic diseases in America project: urolithiasis. J Urol 173(3):848–857. https://doi.org/10.1097/01.ju.0000152082.14384.d7

    Article  PubMed  Google Scholar 

  4. Smith RC, Varanelli M (2000) Diagnosis and management of acute ureterolithiasis: CT is truth. AJR 175(1):3–6

    Article  CAS  PubMed  Google Scholar 

  5. Smith RC, Verga M, McCarthy S, Rosenfield AT (1996) Diagnosis of acute flank pain: value of unenhanced helical CT. AJR 166(1):97–101

    Article  CAS  PubMed  Google Scholar 

  6. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284. https://doi.org/10.1056/NEJMra072149

    Article  CAS  PubMed  Google Scholar 

  7. Ferrandino MN, Bagrodia A, Pierre SA, Scales CD Jr, Rampersaud E, Pearle MS, Preminger GM (2009) Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol 181(2):668–672. https://doi.org/10.1016/j.juro.2008.10.012 (discussion 673)

    Article  PubMed  Google Scholar 

  8. Tasian GE, Ross ME, Song L, Sas DJ, Keren R, Denburg MR, Chu DI, Copelovitch L, Saigal CS, Furth SL (2016) Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin J Am Soc Nephrol 11(3):488–496. https://doi.org/10.2215/CJN.07610715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulusan S, Koc Z, Tokmak N (2007) Accuracy of sonography for detecting renal stone: comparison with CT. J Clin Ultrasound JCU 35(5):256–261. https://doi.org/10.1002/jcu.20347

    Article  PubMed  Google Scholar 

  10. Unal D, Yeni E, Karaoglanoglu M, Verit A, Karatas OF (2003) Can conventional examinations contribute to the diagnostic power of unenhanced helical computed tomography in urolithiasis? Urol Int 70(1):31–35. https://doi.org/10.1159/000067702

    Article  PubMed  Google Scholar 

  11. Ray AA, Ghiculete D, Pace KT, Honey RJ (2010) Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology 76(2):295–300. https://doi.org/10.1016/j.urology.2009.12.015

    Article  PubMed  Google Scholar 

  12. Fowler KA, Locken JA, Duchesne JH, Williamson MR (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222(1):109–113

    Article  PubMed  Google Scholar 

  13. Dunmire B, Lee FC, Hsi RS, Cunitz BW, Paun M, Bailey MR, Sorensen MD, Harper JD (2015) Tools to improve the accuracy of kidney stone sizing with ultrasound. J Endourol 29(2):147–152. https://doi.org/10.1089/end.2014.0332

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sternberg KM, Eisner B, Larson T, Hernandez N, Han J, Pais VM (2016) Ultrasonography significantly overestimates stone size when compared to low-dose, noncontrast computed tomography. Urology 95:67–71. https://doi.org/10.1016/j.urology.2016.06.002

    Article  PubMed  Google Scholar 

  15. Ganesan V, De S, Greene D, Torricelli FC, Monga M (2017) Accuracy of ultrasonography for renal stone detection and size determination: is it good enough for management decisions? BJU Int 119(3):464–469. https://doi.org/10.1111/bju.13605

    Article  PubMed  Google Scholar 

  16. Metzler IS, Smith-Bindman R, Moghadassi M, Wang RC, Stoller ML, Chi T (2017) Emergency department imaging modality effect on surgical management of nephrolithiasis: a multicenter, randomized clinical trial. J Urol 197(3 Pt 1):710–714. https://doi.org/10.1016/j.juro.2016.09.122

    Article  PubMed  Google Scholar 

  17. Shabana W, Bude RO, Rubin JM (2009) Comparison between color Doppler twinkling artifact and acoustic shadowing for renal calculus detection: an in vitro study. Ultrasound Med Biol 35(2):339–350. https://doi.org/10.1016/j.ultrasmedbio.2008.09.023

    Article  PubMed  Google Scholar 

  18. Abdel-Gawad M, Kadasne RD, Elsobky E, Ali-El-Dein B, Monga M (2016) A prospective comparative study of color Doppler ultrasound with twinkling and noncontrast computerized tomography for the evaluation of acute renal colic. J Urol 196(3):757–762. https://doi.org/10.1016/j.juro.2016.03.175

    Article  PubMed  Google Scholar 

  19. May PC, Haider Y, Dunmire B, Cunitz BW, Thiel J, Liu Z, Bruce M, Bailey MR, Sorensen MD, Harper JD (2016) Stone-mode ultrasound for determining renal stone size. J Endourol 30(9):958–962. https://doi.org/10.1089/end.2016.0341

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee JY, Kim SH, Cho JY, Han D (2001) Color and power Doppler twinkling artifacts from urinary stones: clinical observations and phantom studies. AJR 176(6):1441–1445. https://doi.org/10.2214/ajr.176.6.1761441

    Article  CAS  PubMed  Google Scholar 

  21. Lediju MA, Trahey GE, Byram BC, Dahl JJ (2011) Short-lag spatial coherence of backscattered echoes: imaging characteristics. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1377–1388. https://doi.org/10.1109/TUFFC.2011.1957

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bottenus N, Byram BC, Dahl JJ, Trahey GE (2013) Synthetic aperture focusing for short-lag spatial coherence imaging. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1816–1826. https://doi.org/10.1109/TUFFC.2013.2768

    Article  PubMed  PubMed Central  Google Scholar 

  23. Byram B, Dei K, Tierney J, Dumont D (2015) A model and regularization scheme for ultrasonic beamforming clutter reduction. IEEE Trans Ultrason Ferroelectr Freq Control 62(11):1913–1927. https://doi.org/10.1109/TUFFC.2015.007004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Byram B, Jakovljevic M (2014) Ultrasonic multipath and beamforming clutter reduction: a chirp model approach. IEEE Trans Ultrason Ferroelectr Freq Control 61(3):428–440. https://doi.org/10.1109/TUFFC.2014.2928

    Article  PubMed  PubMed Central  Google Scholar 

  25. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M (2009) Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 56(3):489–506. https://doi.org/10.1109/TUFFC.2009.1067

    Article  PubMed  Google Scholar 

  26. Aja-Fernandez S, Curiale AH, Vegas-Sanchez-Ferrero G (2015) A local fuzzy thresholding methodology for multiregion image segmentation. Knowl Based Syst 83:1–12. https://doi.org/10.1016/j.knosys.2015.02.029

    Article  Google Scholar 

  27. Ripolles T, Martinez-Perez MJ, Vizuete J, Miralles S, Delgado F, Pastor-Navarro T (2013) Sonographic diagnosis of symptomatic ureteral calculi: usefulness of the twinkling artifact. Abdom Imaging 38(4):863–869. https://doi.org/10.1007/s00261-012-9946-7

    Article  PubMed  Google Scholar 

  28. Kielar AZ, Shabana W, Vakili M, Rubin J (2012) Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J Ultrasound Med 31(10):1619–1625

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Vanderbilt Institute of Surgery and Engineering (VISE) Pilot and Feasibility Award, VISE Surgeon in Residence Award, and R01EB020040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan S. Hsi.

Ethics declarations

Conflict of interest

The authors report no competing conflict of interest disclosures.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tierney, J.E., Schlunk, S.G., Jones, R. et al. In vitro feasibility of next generation non-linear beamforming ultrasound methods to characterize and size kidney stones. Urolithiasis 47, 181–188 (2019). https://doi.org/10.1007/s00240-018-1036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1036-z

Keywords

Navigation