, Volume 46, Issue 3, pp 271–278 | Cite as

SaRNA-mediated activation of TRPV5 reduces renal calcium oxalate deposition in rat via decreasing urinary calcium excretion

  • Tao Zeng
  • Xiaolu Duan
  • Wei Zhu
  • Yang Liu
  • Wenqi Wu
  • Guohua Zeng
Original Paper


Hypercalciuria is a main risk factor for kidney stone  formation. TRPV5 is the gatekeeper protein for mediating calcium transport and reabsorption in the kidney. In the present study, we tested the effect of TRPV5 activation with small activating RNA (saRNA), which could induce gene expression by targeting the promoter of the gene, on ethylene glycol (EG)-induced calcium oxalate (CaOx) crystals formation in rat kidney. Five pairs of RNA activation sequences targeting the promoter of rat TRPV5 were designed and synthesized. The synthesized saRNA with the strongest activating effect was selected, and transcellular calcium transportation was tested by Fura-2 analysis. Subsequently, Sprague–Dawley rats were equally divided into three groups and fed with water, 1% EG for 28 days after injecting the negative control saRNA, 1% EG for 28 days after injecting the selected TRPV5-saRNA, respectively. The CaOx crystal formation and the 24-h urine components were assessed. In vitro study, saRNA ds-320 could significantly activate the expression of TRPV5 and transcellular calcium transportation. In vivo study, after 28 days treatment of EG, rats pre-infected with saRNA ds-320 had lower urinary calcium excretion and renal CaOx crystals formation as compared to that pre-infected with negative control saRNA. Activation of TRVP5 with saRNA ds-320 could inhibit EG-induced calcium oxalate crystals formation via promoting urine calcium reabsorption and decreasing urine calcium excretion in rats.


TRPV5 Small activating RNA Calcium oxalate Crystal 



This work was supported by grants from the National Natural Science Foundation of China (No. 81370804 and No. 81170652) and the Science and Technology Project in Guangzhou (No. 201604020001).

Compliance with ethical standards

Conflict of interest

The authors of this study disclose no conflicts of interest.


  1. 1.
    Renkema KY, Lee K, Topala CN et al (2009) TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol Dial Transpl 24(6):1919–1924CrossRefGoogle Scholar
  2. 2.
    Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344CrossRefPubMedGoogle Scholar
  3. 3.
    Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86–96PubMedPubMedCentralGoogle Scholar
  4. 4.
    Atan L, Andreoni C, Ortiz V et al (2005) High kidney stone risk in men working in steel industry at hot temperatures. Urology 65(5):858–861CrossRefPubMedGoogle Scholar
  5. 5.
    Borghi L, Meschi T, Amato F et al (1996) Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospectivestudy. J Urol 155(3):839–843CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor EN, Stampfer MJ, Curhan GC (2004) Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol 15(12):3225–3232CrossRefPubMedGoogle Scholar
  7. 7.
    Khan SR, Glenton PA, Byer KJ (2007) Dietary oxalate and calcium oxalate nephrolithiasis. J Urol 178(5):2191–2196CrossRefPubMedGoogle Scholar
  8. 8.
    Goldfarb DS (2009) Prospects for dietary therapy of recurrent nephrolithiasis. Adv Chronic Kidney Dis 16(1):21–29CrossRefPubMedGoogle Scholar
  9. 9.
    Tessier J, Petrucci M, Trouvé ML et al (2001) A family-based study of metabolic phenotypes in calcium urolithiasis. Kidney Int 60(3):1141–1147CrossRefPubMedGoogle Scholar
  10. 10.
    Damasio B, Massarino F, Durand F et al (2005) Prevalence of fasting hypercalciuria associated with increased citraturia in the ambulatory evaluation of nephrolithiasis. J Nephrol 18(3):262–266PubMedGoogle Scholar
  11. 11.
    Wang SG, Hu DL, Xi QL et al (2008) Expression of calbindin-D28 k in genetic hypercalciuric stone-forming rats kidney and its role in pathogenesis of idiopathic hypercalciuria. Zhonghua Yi Xue Za Zhi 88(20):1422–1424PubMedGoogle Scholar
  12. 12.
    Yoon V, Adams-Huet B, Sakhaee K et al (2013) Hyperinsulinemia and urinary calcium excretion in calcium stone formers with idiopathic hypercalciuria. J Clin Endocrinol Metab 98(6):2589–2594CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bansal AD, Hui J, Goldfarb DS (2009) Asymptomatic nephrolithiasis detected by ultrasound. Clin J Am Soc Nephrol 4(3):680–684CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Investig 115(10):2598–2608CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC et al (2003) Renal Ca2 + wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112(12):1906–1914CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Na T, Zhang W, Jiang Y et al (2009) The A563T variation of the renal epithelial calcium channel TRPV5 among African Americans enhances calcium influx. Am J Physiol Renal Physiol 296(5):F1042–F1051CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li LC, Okino ST, Zhao H et al (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103(46):17337–17342CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huang V, Qin Y, Wang J et al (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gusella GL, Fedorova E, Marras D et al (2002) In vivo gene transfer to kidney by lentiviral vector. Kidney Int 61(1 Suppl):S32–S36CrossRefPubMedGoogle Scholar
  20. 20.
    Peng JB (2011) TRPV5 and TRPV6 in transcellular Ca(2 +) transport: regulation, gene duplication, and polymorphisms in African populations. Adv Exp Med Biol 704:239–275CrossRefPubMedGoogle Scholar
  21. 21.
    Xi Q, Wang S, Ye Z et al (2011) Adenovirus-delivered microRNA targeting the vitamin D receptor reduces intracellular Ca2+ concentrations by regulating the expression of Ca2+-transport proteins in renal epithelial cells. BJU Int 107(8):1314–1319CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu W, Xu YF, Feng Y et al (2014) Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis 42(6):519–526CrossRefPubMedGoogle Scholar
  23. 23.
    Trinchieri A (1996) Epidemiology of urolithiasis. Arch Ital Urol Androl 68(4):203–249PubMedGoogle Scholar
  24. 24.
    Stevenson AE, Robertson WG, Markwell P (2003) Risk factor analysis and relative supersaturation as tools for identifying calcium oxalate stone-forming dogs. J Small Anim Pract 44(11):491–496CrossRefPubMedGoogle Scholar
  25. 25.
    Aruga S, Honma Y (2011) Renal calcium excretion and urolithiasis. Clin Calcium 21(10):1465–1472PubMedGoogle Scholar
  26. 26.
    Nijenhuis T, Hoenderop JG, van der Kemp AW et al (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14(11):2731–2740CrossRefPubMedGoogle Scholar
  27. 27.
    Radhakrishnan VM, Ramalingam R, Larmonier CB et al (2013) Post-translational loss of renal TRPV5 calcium channel expression, Ca(2+) wasting, and bone loss in experimental colitis. Gastroenterology 145(3):613–624CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang S, Hu D, Xi Q et al (2008) The expression and implication of TRPV5, Calbindin-D28 k and NCX1 in idiopathic hypercalciuria. J Huazhong Univ Sci Technol Med Sci 28(5):580–583CrossRefPubMedGoogle Scholar
  29. 29.
    Janowski BA, Younger ST, Hardy DB et al (2007) Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3(3):166–173CrossRefPubMedGoogle Scholar
  30. 30.
    Huang V, Qin Y, Wang J et al (2010) RNAa is conserved in mammalian cells. PLoS One 5(1):e8848CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kosaka M, Kang MR, Yang G et al (2012) Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther 22(5):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhao F, Pan S, Gu Y et al (2015) Reactivation of HIC-1 gene by saRNA inhibits clonogenicity and invasiveness in breast cancer cells. Oncol Lett 9(1):159–164CrossRefPubMedGoogle Scholar
  33. 33.
    Ge Q, Wang C, Ruan Y et al (2016) Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells. Onco Targets Ther 9:231–241PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yoon S, Huang KW, Reebye V et al (2016) Targeted delivery of C/EBPα -saRNA by pancreatic ductal adenocarcinoma-specific rna aptamers inhibits tumor growth in vivo. Mol Ther 24(6):1106–1116CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tao Zeng
    • 1
    • 2
  • Xiaolu Duan
    • 1
    • 2
  • Wei Zhu
    • 1
    • 2
  • Yang Liu
    • 1
    • 2
  • Wenqi Wu
    • 1
    • 2
  • Guohua Zeng
    • 1
    • 2
  1. 1.Department of Urology, Minimally Invasive Surgery CenterThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory of Urology, Minimally Invasive Surgery CenterThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations