, Volume 46, Issue 3, pp 243–256 | Cite as

The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate

  • Anamarija Šter
  • Silvija Šafranko
  • Katarina Bilić
  • Berislav Marković
  • Damir Kralj
Original Paper


This paper reports on the investigation of experimental conditions relevant for spontaneous precipitation of significant amount of pure calcium oxalate dihydrate (COD). For this purpose, the hydrodynamic and thermodynamic parameters, such as mode of agitation, temperature, supersaturation and concentration of additives (citrate ions), have been studied. The results show that in the model systems, without the citrate addition and applied mechanical stirring, calcium oxalate monohydrate (COM) was observed as dominant modification after 20 min of aging, while the magnetic stirring resulted in a formation of a mixture of COM and calcium oxalate trihydrate (COT), regardless of the temperature applied. In the mechanically stirred systems, the addition of citrate ions in the range of concentrations, 0.001 mol dm−3 < c i (Na3C6H5O7) < 0.012 mol dm−3, caused the formation of COM and COD mixture at all temperatures. At the same conditions and in the magnetically stirred systems formation of COD, in a mixture with COT or COM, has been observed. The highest COD content in the mechanically stirred system was obtained at 45 °C and c i (Na3C6H5O7) = 0.001 mol dm−3 (w = 89.5%), while in the magnetically stirred system almost pure COD was obtained at 37 °C and c i (Na3C6H5O7) = 0.008 mol dm−3 (w = 96.5%).


Calcium oxalate monohydrate Calcium oxalate dihydrate Calcium oxalate trihydrate Citrate Temperature Stirring 



This work was supported by the Department of Chemistry, University of Osijek, Croatia and Laboratory for Precipitation Processes, Ruđer Bošković Institute, Zagreb, Croatia. The authors thank Dr. B. Njegic Dzakula for help with calculations of solution composition and Dr. J. Kontrec for PSD analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hess B, Ryall RL, Kavanagh JP, Khan SR, Kok DJ, Rodgers AL, Tiselius HG (2001) Methods for measuring crystallization in urolithiasis research: why, how and when? Eur Urol 40(2):220–230CrossRefPubMedGoogle Scholar
  2. 2.
    Bramley AS, Hounslow MJ, Ryall RL (1997) Aggregation during precipitation from solution. Kinetics for calcium oxalate monohydrate. Chem Eng Sci 52(5):747–757. doi: 10.1016/S0009-2509(96)00447-2 CrossRefGoogle Scholar
  3. 3.
    Pitt K, Mitchell GP, Ray A, Heywood BR, Hounslow MJ (2012) Micro-mechanical model of calcium oxalate monohydrate aggregation in supersaturated solutions: effect of crystal form and seed concentration. J Cryst Growth 361:176–188. doi: 10.1016/j.jcrysgro.2012.09.020 CrossRefGoogle Scholar
  4. 4.
    Conti C, Casati M, Colombo C, Realini M, Brambilla L, Zerbi G (2014) Phase transformation of calcium oxalate dihydrate-monohydrate: effects of relative humidity and new spectroscopic data. Spectrochim Acta Part A 128:413–419. doi: 10.1016/j.saa.2014.02.182 CrossRefGoogle Scholar
  5. 5.
    Lj Brečević, Kralj D (1989) Factors influencing the distribution of hydrates in calcium oxalate precipitation. J Cryst Growth 97(2):460–468. doi: 10.1016/0022-0248(89)90227-3 CrossRefGoogle Scholar
  6. 6.
    Brown P, Ackermann D, Finlayson B (1989) Calcium oxalate dihydrate (weddellite) precipitation. J Cryst Growth 98(3):285–292. doi: 10.1016/0022-0248(89)90143-7 CrossRefGoogle Scholar
  7. 7.
    Škrtić D, Marković M, Komunjer LJ, Füredi-Milhofer H (1984) Precipitation of calcium oxalates from high ionic strength solutions: I. Kinetics of spontaneous precipitation of calcium oxalate trihydrate. J Cryst Growth 66(2):431–440. doi: 10.1016/0022-0248(84)90227-6 CrossRefGoogle Scholar
  8. 8.
    Farmanesh S, Ramamoorthy S, Chung J, Asplin JR, Karande P, Rimer JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136(1):367–376. doi: 10.1021/ja410623q CrossRefPubMedGoogle Scholar
  9. 9.
    Heijnen W, Jellinghaus W, Klee WE (1985) Calcium oxalate trihydrate in urinary calculi. Urol Res 13(6):281–283. doi: 10.1007/BF00262657 CrossRefPubMedGoogle Scholar
  10. 10.
    Schaefer A, Bausch W (1979) Bedeutung der Spurenelementverteilung in Calciumoxalat-Harnsteinen. Fortschr Urol Nephrol 14:236–241CrossRefGoogle Scholar
  11. 11.
    Pak CY (1991) Citrate and renal calculi: new insights and future directions. Am J Kidney Dis 17(4):420–425. doi: 10.1016/S0272-6386(12)80635-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Hallson PC, Rose GA, Sulaiman S (1983) Raising urinary citrate lowers calcium oxalate and calcium phosphate crystal formation in whole urine. Urol Int 38(3):179–181. doi: 10.1159/000280885 CrossRefPubMedGoogle Scholar
  13. 13.
    Ryall RL, Harnett RM, Marshall VR (1981) The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta 112(3):349–356. doi: 10.1016/0009-8981(81)90458-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Kok DJ, Papapoulos SE, Bijvoet OL (1986) Excessive crystal agglomeration with low citrate excretion in recurrent stone-formers. Lancet 1:1056–1058. doi: 10.1016/S0140-6736(86)91329-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33(2):73–79. doi: 10.1007/s00240-005-0464-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Kok DJ, Papapoulos SE, Bijvoet OL (1990) Crystal agglomeration is a major element in calcium oxalate urinary stone formation. Kidney Int 37(1):51–56CrossRefPubMedGoogle Scholar
  17. 17.
    Škrtić D, Füredi-Milhofer H, Marković M (1987) Precipitation of calcium oxalates from high ionic strength solutions: V. The influence of precipitation conditions and some additives on the nucleating phase. J Cryst Growth 80:113–120. doi: 10.1016/0022-0248(87)90530-6 CrossRefGoogle Scholar
  18. 18.
    Lj Brečević, Kralj D (1986) The influence of some amino acids on calcium oxalate dihydrate transformation. J Cryst Growth 79:178–184. doi: 10.1016/0022-0248(86)90433-1 CrossRefGoogle Scholar
  19. 19.
    Ackermann D, Brown P, Finlayson B (1988) COD production. Urol Res 16:219Google Scholar
  20. 20.
    Doherty WOS, Crees OL, Senogles E (1994) The preparation of calcium oxalate dihydrate crystals. Cryst Res Technol 29:517–524. doi: 10.1002/crat.2170290412 CrossRefGoogle Scholar
  21. 21.
    Kaloustian J, El-Moselhy TF, Portugal H (2003) Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta 334:117–129CrossRefPubMedGoogle Scholar
  22. 22.
    Echigo T, Kimata M, Kyono A, Shmizu M, Hatta T (2005) Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineral Mag 69:77–88. doi: 10.1180/0026461056910235 CrossRefGoogle Scholar
  23. 23.
    Babić-Ivančić V, Füredi-Milhofer H, Purgarić B, Brničević N, Despotović Z (1985) Precipitation of calcium oxalates from high ionic strength solutions III. The influence of reactant concentrations on the properties of the precipitates. J Cryst Growth 71:655–663. doi: 10.1016/0022-0248(85)90374-4 CrossRefGoogle Scholar
  24. 24.
    Maurice-Estepa L, Levillain P, Lacour B, Daudon M (2000) Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298:1–11CrossRefPubMedGoogle Scholar
  25. 25.
    Ouyang JM, Deng SP, Zhou N, Tieke B (2005) Effect of tartrates with various counterions on the precipitation of calcium oxalate in vesicle solutions. Colloids Surf A256:21–27. doi: 10.1016/j.colsurfa.2004.09.035 CrossRefGoogle Scholar
  26. 26.
    Kok DJ, Papapoulos SE, Blomen LJ, Bijvoet OL (1988) Modulation of calcium oxalate monohydrate crystallization kinetics in vitro. Kidney Int 34(3):346–350CrossRefPubMedGoogle Scholar
  27. 27.
    Ouyang JM (2006) Effect of temperature on growth and aggregation of calcium oxalate in presence of various carboxylic acids in silica gel systems. Mater Sci Eng C 26:679–682. doi: 10.1016/j.msec.2005.06.060 CrossRefGoogle Scholar
  28. 28.
    Füredi-Milhofer H, Babić-Ivančić V, Lj Brečević, Filipović-Vinceković N, Kralj D, Lj Komunjer, Marković M, Škrtić D (1990) Factors influencing nucleation from solutions supersaturated to different crystal hydrates. Colloids Surf 48:219–230. doi: 10.1016/0166-6622(90)80230-2 CrossRefGoogle Scholar
  29. 29.
    Thongboonkerd V, Semangoen T, Chutipongtanate S (2006) Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta 367:120–131. doi: 10.1016/j.cca.2005.11.033 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OsijekOsijekCroatia
  2. 2.Ruđer Bošković InstituteZagrebCroatia

Personalised recommendations