The Semi-Enzymatic Origin of Metabolic Pathways: Inferring a Very Early Stage of the Evolution of Life

Abstract

The early evolution of life is a period with many important events with a lot of big and open questions. One of them is the evolution of metabolic pathways, which means the origin and assembly of enzymes that act together. The retrograde hypothesis was the first attempt to explain the origin and evolutionary history of metabolic pathways; Norman Horowitz developed this first significant hypothesis. This idea was followed by relevant proposals developed by Sam Granick, who proposed the “forward direction hypothesis,” and then the successful idea of “Patchwork” assembly proposed independently by Martynas Yčas and Roy Jensen. Since then, a few new hypotheses were proposed; one of the most influential was made by Antonio Lazcano and Stanley Miller in the Journal Molecular Evolution, the “semi-enzymatic origin” of metabolic pathways. This article was cited more than 160 times, including in most papers published about the early evolution of metabolism, placing it as influential work in the field. The ideas proposed in this work and their effects on studying the origin and early evolution of life are analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1

modified from Lazcano and Miller 1999)

References

  1. Alifano P, Fani R, Lio P, Lio L, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60(1):44–69

    Article  CAS  Google Scholar 

  2. Andersen JL, Flamm C, Merkle D, Stadler PF (2017) An intermediate level of abstraction for computational systems chemistry. Phil Trans R Soc A 375:20160354. https://doi.org/10.1098/rsta.2016.0354

    Article  PubMed  CAS  Google Scholar 

  3. Anet FAL (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659. https://doi.org/10.1016/j.cbpa.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  4. Becerra A, Delaye L, Islas S, Lazcano A (2007) the very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Ann Rev Ecol Evol Syst 38(1):361–379. https://doi.org/10.1146/annurev.ecolsys.38.091206.095825

    Article  Google Scholar 

  5. Becerra A, Rivas M, García-Ferris C, Lazcano A, Peretó J (2014) A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways. Int Microbiol. https://doi.org/10.2436/20.1501.01.211

    Article  PubMed  Google Scholar 

  6. Braakman R, Smith E (2012) The compositional and evolutionary logic of metabolism. Phys Biol 10(1):011001

    Article  CAS  Google Scholar 

  7. Benner SA, Caraco MD, Thomson JM, Gaucher EA (2002) Evolution: planetary biology – Paleontological, geological, and molecular histories of life. Science 296:864. https://doi.org/10.1126/science.1069863

    Article  PubMed  CAS  Google Scholar 

  8. Braakman R, Smith E (2014) Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS One 9(2):e87950. https://doi.org/10.1371/journal.pone.0087950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bryant DA, Liu Z, Li T, et al. (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa chlorobi, chloroflexi, and acidobacteria. In: Burnap R, Vermaas W (eds) functional genomics and evolution of photosynthetic systems. Advances in Photosynthesis and Respiration. Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-007-1533-2_3

  10. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro (2007) Formamide as the main building block in the origin of nucleic acids. BMC Evol Biol. https://doi.org/10.1186/1471-2148-7-S2-S1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Delaye L, Lazcano A (2005) Prebiological evolution and the physics of the origin of life. Phys Life Rev 2(1):47–64. https://doi.org/10.1016/j.plrev.2004.12.002

    Article  PubMed  Google Scholar 

  12. de Duve C (1991) The nature and origin of life. In: Patterson N (ed) Blueprint for a cell. Burlington, NC.

  13. Degani C, Halmann M (1967) Chemical evolution of carbohydrate metabolism. Nature 216:1207. https://doi.org/10.1038/2161207a0

    Article  CAS  Google Scholar 

  14. Díaz-Mejía J, Pérez-Rueda E, Segovia L (2007) A network perspective on the evolution of metabolism by gene duplication. Genome Biol 8:R26. https://doi.org/10.1186/gb-2007-8-2-r26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dyson F (1982) A model for the origin of life. J Mol Evol 18:344–350

    Article  CAS  Google Scholar 

  16. Dyson F (1999) Origins of life, revised. New York, Cambridge University Press

    Book  Google Scholar 

  17. Eschenmoser A, Loewenthal E (1992) Chemistry of potentially prebiological natural products. Chem Soc Rev 21(1):1–16. https://doi.org/10.1039/CS9922100001

    Article  CAS  Google Scholar 

  18. Falkowski P (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275. https://doi.org/10.1038/387272a0

    Article  CAS  Google Scholar 

  19. Fani R, Fondi M (2009) Origin and evolution of metabolic pathways. Phys Life Rev 6:23

    Article  Google Scholar 

  20. Fani R (2012) The origin and evolution of metabolic pathways: why and how did primordial cells construct metabolic routes? Evo Edu Outreach 5:367–381. https://doi.org/10.1007/s12052-012-0439-5

    Article  Google Scholar 

  21. Gánti T (2003) The principles of life. Oxford University Press.

  22. Goldford JE, Hartman H, Smith TF, Segrè D (2017) Remnants of an ancient metabolism without phosphate. Cell 168:1126–1134

    Article  CAS  Google Scholar 

  23. Goldford JE, Segrè D (2018) Modern views of ancient metabolic networks. Curr Opin Syst Biol. https://doi.org/10.1016/j.coisb.2018.01.004

    Article  Google Scholar 

  24. Goldford JE, Hartman H, Marsland R, Segrè D (2019) Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism. Nat Ecol Evol 12:1715–1724. https://doi.org/10.1038/s41559-019-1018-8

    Article  Google Scholar 

  25. Granick S (1957) Speculations on the origins and evolution of photosynthesis. Ann New York Acad Sci 69(2):292–308. https://doi.org/10.1111/j.1749-6632.1957.tb49665.x

    Article  CAS  Google Scholar 

  26. Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4(4):359–370

    Article  CAS  Google Scholar 

  27. Horowitz NH (1945) On the evolution of biochemical syntheses. PNAS 31(6):153–157. https://doi.org/10.1073/pnas.31.6.153

    Article  PubMed  CAS  Google Scholar 

  28. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11(2):97–108. https://doi.org/10.1038/nrg2689

    Article  PubMed  CAS  Google Scholar 

  29. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425. https://doi.org/10.1146/annurev.mi.30.100176.002205

    Article  PubMed  CAS  Google Scholar 

  30. Kacar B, Guy L, Smith E, Baross J (2017) Resurrecting ancestral genes in bacteria to interpret ancient biosignatures. Phil Trans R Soc A 375:20160352

    Article  CAS  Google Scholar 

  31. Kauffman S (1971) Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J Cybern 1:71–96

    Article  Google Scholar 

  32. Kauffman S (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Article  CAS  Google Scholar 

  33. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  34. Lazcano A (2010) Which way to life? Orig Life Evol Biosph 40(2):161–167. https://doi.org/10.1007/s11084-010-9195-0

    Article  PubMed  Google Scholar 

  35. Lazcano A, Miller SL (1999) On the origin of metabolic pathways. J Mol Evol 49(4):424–431. https://doi.org/10.1007/PL00006565

    Article  PubMed  CAS  Google Scholar 

  36. Light S, Kraulis P (2004) Network analysis of metabolic enzyme evolution in Escherichia coli. BMC Bioinfo 5:15. https://doi.org/10.1186/1471-2105-5-15

    Article  Google Scholar 

  37. Lindahl PA (2004) Stepwise evolution of nonliving to living chemical systems. Orig Life Evol Biosph 34(4):371–389. https://doi.org/10.1023/B:ORIG.0000029880.76881.f5

    Article  PubMed  CAS  Google Scholar 

  38. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc B 358:59–83. https://doi.org/10.1098/rstb.2002.1183

    Article  PubMed  CAS  Google Scholar 

  39. Mayans O, Ivens A, Nissen LJ, Kirschner K, Wilmanns M (2002) Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry. EMBO J 21:3245–3254. https://doi.org/10.1093/emboj/cdf298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128. https://doi.org/10.1093/molbev/msn161

    Article  PubMed  CAS  Google Scholar 

  41. Morowitz H (1992) Beginnings of Life. Yale University Press, New Haven

    Google Scholar 

  42. Morowitz H (1999) A theory of biochemical organization, metabolic pathways, and evolution. Complex 4:39–53. https://doi.org/10.1002/(SICI)1099-0526(199907/08)4:6

    Article  Google Scholar 

  43. Muchowska KB, Varma SJ, Chevallot-Beroux E et al (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716–1721. https://doi.org/10.1038/s41559-017-0311-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muchowska KB, Chevallot-Beroux E, Moran J (2019) Recreating ancient metabolic pathways before enzymes. Bio Med Chem 27:2292–2297. https://doi.org/10.1016/j.bmc.2019.03.012

    Article  CAS  Google Scholar 

  45. Muchowska KB, Varma SJ, Moran J (2020) Nonenzymatic metabolic reactions and life’s origins. Chem Rev 120(15):7708–7744. https://doi.org/10.1021/acs.chemrev.0c00191

    Article  PubMed  CAS  Google Scholar 

  46. Noda-Garcia L, Liebermeister W, Tawfik DS (2018) Metabolite-enzyme coevolution: from single enzymes to metabolic pathways and networks. Annu Rev Biochem 87:187–216. https://doi.org/10.1146/annurev-biochem-062917-012023

    Article  PubMed  CAS  Google Scholar 

  47. Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem Biol 1:11–2. https://doi.org/10.1016/1074-5521(94)90036-1

    Article  PubMed  CAS  Google Scholar 

  48. Peretó J (2012) Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chem Soc Rev 41(16):5394–5403. https://doi.org/10.1039/c2cs35054h

    Article  PubMed  CAS  Google Scholar 

  49. Rieders G, Merricko MJ, Castorphs H, Kleinersn D (1994) Function of hisF and hisH gene products in histidine biosynthesis. J Biol Chem 269:14384–14392

    Google Scholar 

  50. Shapiro R (2000) A replicator was not involved in the origin of life. IUBMB Life 49:173–176. https://doi.org/10.1080/713803621

    Article  PubMed  CAS  Google Scholar 

  51. Smith D, Ames BN (1964) Intermediates in the early steps of histidine biosynthesis. J Biol Chem 239:1848–1855

    Article  CAS  Google Scholar 

  52. Scossa F, Fernie AR (2020) The evolution of metabolism: how to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 18:482–500. https://doi.org/10.1016/j.csbj.2020.02.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Takagi YA, Diep NH, Wexler TB, Goldman AD (2020) The coevolution of cellularity and metabolism following the origin of life. J Mol Evol 88:598–617. https://doi.org/10.1007/s00239-020-09961-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vázquez-Salazar A, Becerra A, Lazcano A (2018) Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. PloS one. https://doi.org/10.1371/journal.pone.0196349

    Article  PubMed  PubMed Central  Google Scholar 

  55. Varela F, Maturana HR (1973) De Máquinas y Seres Vivos: Una teoría sobre la organización biológica. Editorial Universitaria, Chile

    Google Scholar 

  56. Wächtershäuser G (1988) Before enzymes and templates: a theory of surface metabolism. Microbiol Rev 52:452–484

    Article  Google Scholar 

  57. Wächtershauser G (1990) Evolution of the first metabolic cycles. PNAS 87:200–204. https://doi.org/10.1073/pnas.87.1.200

    Article  PubMed  Google Scholar 

  58. Walker SI, Grover MA, Hud NV (2012) Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution. PLoS One 7(4):e34166. https://doi.org/10.1371/journal.pone.0034166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wilmanns M, Jansonius JN, Hyde CC, Davies DR, Kirschner K (1991) structural conservation in parallel β/α-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochem 30:9161–9169. https://doi.org/10.1021/bi00102a006

    Article  CAS  Google Scholar 

  60. Yčas M (1955) A note on the origin of life. PNAS 1:714–716. https://doi.org/10.1073/pnas.41.10.714

    Article  Google Scholar 

  61. Yčas M (1974) On earlier states of the biochemical system. J Theor Biol 44:145–160. https://doi.org/10.1016/S0022-5193(74)80035-4

    Article  PubMed  Google Scholar 

  62. Yi R, Tran QP, Ali S, Yoda I, Adam ZR, Cleaves HJ, Fahrenbach AC (2020) A continuous reaction network that produces RNA precursors. Proc Natl Acad Sci USA 16/117:13267–13274. https://doi.org/10.1073/pnas.1922139117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by PAPIIT-UNAM (BV100218) is gratefully acknowledged. Thanks, are given to José Alberto Campillo-Balderas, Alberto Vázquez-Salazar, Ricardo Hernández-Morales, Luis Delaye and David Liberles for helpful comments on the manuscript.

Funding

PAPIIT-UNAM, project BV100218.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arturo Becerra.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Handling Editor: Aaron Goldman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becerra, A. The Semi-Enzymatic Origin of Metabolic Pathways: Inferring a Very Early Stage of the Evolution of Life. J Mol Evol 89, 183–188 (2021). https://doi.org/10.1007/s00239-021-09994-0

Download citation

Keywords

  • Semi-enzymatic synthesis
  • Evolution of metabolism
  • Early evolution of life