Structural-Genetic Characterization Of Novel Butaryl co-A Dehydrogenase and Proposition of Butanol Biosynthesis Pathway in Pusillimonas ginsengisoli SBSA

Abstract

Despite extensive use in the biofuel industry, only butyryl co-A dehydrogenase enzymes from the Clostridia group have undergone extensive structural and genetic characterization. The present study, portrays the characterization of structural, functional and phylogenetic properties of butyryl co-A dehydrogenase identified within the genome of Pusillimonas ginsengisoli SBSA. In silico characterization, homology modelling and docking data indicates that this protein is a homo-tetramer and 388 amino acid residue long, rich in alanine and leucine residue; having molecular weight of 42347.69 dalton. Its isoelectric point value is 5.78; indicate its neutral nature while 38.38 instability index value indicate its stable nature. Its thermostable nature evidenced by its high aliphatic index (93.14); makes its suitable for industry-based use. The secondary structure prediction analysis of butyryl co-A dehydrogenase unveiled that the proteins has secondary arrangements of 54% α-helix, 13% β-stand and 5% disordered conformation. However, phylogenetic analysis clearly indicates that probably horizontal gene transfer is the primary mechanism of spreading of this gene in this organism. Notably, multiple sequence alignment study of phylogenetically diverse butyryl co-A dehydrogenase sequence highlighted the presence of conserved amino acid residues i.e. YXV/LGXKXWXS/T. Physicochemical characterization of other relevant proteins involved in butanol metabolism of SBSA also has been carried out. However, metabolic construction of functional butanol biosynthesis pathway in SBSA, enlightened its cost-effective potential use in biofuel industry as an alternate to Clostridia system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andorf C, Dobbs D, Honavar V (2007) Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach. BMC Bioinform 8:284. https://doi.org/10.1186/1471-2105-8-284

    CAS  Article  Google Scholar 

  2. Atsumi S, Liao J (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419. https://doi.org/10.1016/j.copbio.2008.08.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

    CAS  Article  PubMed  Google Scholar 

  4. Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241–249. https://doi.org/10.1111/j.1574-6976.1995.tb00208.x

    CAS  Article  Google Scholar 

  5. Berezina OV, Zakharova NV, Brandt A et al (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646. https://doi.org/10.1007/s00253-010-2480-z

    CAS  Article  PubMed  Google Scholar 

  6. Berezina OV, Zakharova NV, Yarotsky CV et al (2012) Microbial producers of butanol. Appl Biochem 48:625–638. https://doi.org/10.1134/S0003683812070022

    CAS  Article  Google Scholar 

  7. Berman HM, Westbrook J, Feng Z et al (2000) RCSB Protein Data Bank: Structural biology views for basic and applied research. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    CAS  Article  Google Scholar 

  9. Bramucci MG, Eliot AC, Maggio-Hall LA, Nakamura CE, Butamax Advanced Biofuels LLC (2012) Butanol dehydrogenase enzyme from the bacterium Achromobacter xylosoxidans. U.S. Patent 8,188,250

  10. Bramucci MG, Eliot AC, Maggio-Hall LA, Nakamura CE (2014) Butamax Advanced Biofuels LLC, Butanol dehydrogenase enzyme from the bacterium Achromobacter xylosoxidans. U.S. Patent 8,691,540.

  11. Caspi R, Foerster H, Fulcher CA et al (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516. https://doi.org/10.1093/nar/gkj128

    CAS  Article  PubMed  Google Scholar 

  12. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222. https://doi.org/10.1021/bi00699a001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222–245. https://doi.org/10.1021/bi00699a002

    CAS  Article  PubMed  Google Scholar 

  14. Discovery studio (2017). R2 BIOVIA, San Diego: Dassault Systèmes, 2017. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html

  15. Djordjevic S, Pace CP, Stankovich MT et al (1995) Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii. Biochemistry 34:2163–2171

    CAS  Article  Google Scholar 

  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Fox AR, Soto G, Mozzicafreddo M et al (2014) Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches. Gene 533:5–10. https://doi.org/10.1016/j.gene.2013.09.096

    CAS  Article  PubMed  Google Scholar 

  18. Francke C, Siezen RJ, Teusink B (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13:550–558. https://doi.org/10.1016/j.tim.2005.09.001

    CAS  Article  PubMed  Google Scholar 

  19. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The Proteomics Protocols Handbook, Springer Protocols Handbooks. Humana Press, Totowa. https://doi.org/10.1385/1-59259-890-0:571

    Google Scholar 

  20. Geourjon C, Deléage G (1995) SOPMA: significant improvements in proteinsecondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    CAS  Article  PubMed  Google Scholar 

  21. Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343. https://doi.org/10.1016/j.copbio.2011.02.004

    CAS  Article  PubMed  Google Scholar 

  22. Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4:155–161. https://doi.org/10.1093/protein/4.2.155

    CAS  Article  Google Scholar 

  23. Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657. https://doi.org/10.1016/j.biotechadv.2010.05.015

    CAS  Article  PubMed  Google Scholar 

  24. Hu B, Lidstrom ME (2014) Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnol Biofuels 7:156. https://doi.org/10.1186/s13068-014-0156-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898. https://doi.org/10.1093/oxfordjournals.jbchem.a133168

    CAS  Article  PubMed  Google Scholar 

  26. Islam K, Pal K, Debnath U, Sidick Basha R, Khan AT, Jana K, Misra AK (2020) Anti-cancer potential of (1,2-dihydronaphtho[2,1-b]furan-2-yl)methanone derivatives. Bioorg Med Chem Lett. https://doi.org/10.1016/j.bmcl.2020.127476

    Article  PubMed  Google Scholar 

  27. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From Appl Microbiol Biotechnol (2008) 80:849–862 861 genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    CAS  Article  Google Scholar 

  28. Kataoka N, Tajima T, Kato J et al (2011) Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express 1:10. https://doi.org/10.1186/2191-0855-1-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    CAS  Article  Google Scholar 

  30. Kim EJ, Kim YJ, Kim KJ et al (2014) Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum. Biochem Biophys Res Commun 451:431–435. https://doi.org/10.1016/j.bbrc.2014.07.139

    CAS  Article  PubMed  Google Scholar 

  31. Kishino H, Hasegawa M (2001) Maximum likelihood. Encycl Genet. https://doi.org/10.1006/RWGN.2001.0803

    Article  Google Scholar 

  32. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kurtz S, Phillippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  Google Scholar 

  34. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    CAS  Article  PubMed  Google Scholar 

  35. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363. https://doi.org/10.1016/j.ymben.2011.04.004

    CAS  Article  PubMed  Google Scholar 

  36. Loder AJ, Zeldes BM, Garrison GD et al (2015) Alcohol selectivity in a synthetic thermophilic n-butanol pathway is driven by biocatalytic and thermostability characteristics of constituent enzymes. Appl Environ Microbiol 81:7187–7200. https://doi.org/10.1128/AEM.02028-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Lovell SC, Davis IW, Arendall WB et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437e450. https://doi.org/10.1002/prot.10286

    CAS  Article  Google Scholar 

  38. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. https://doi.org/10.1016/j.copbio.2011.01.011

    CAS  Article  PubMed  Google Scholar 

  39. Mandal S, Rameez MJ, Chatterjee S et al (2020) Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli SBSA. Microbiology 166:386–397. https://doi.org/10.1099/mic.0.000890

    CAS  Article  PubMed  Google Scholar 

  40. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. https://doi.org/10.1093/nar/gkq1189

    CAS  Article  PubMed  Google Scholar 

  41. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405. https://doi.org/10.1093/bioinformatics/16.4.404

    CAS  Article  Google Scholar 

  42. Moldoveanu SC, David V, Moldoveanu SC et al (2017) Properties of analytes and matrices determining HPLC Selection. Sel HPLC Method Chem Anal. https://doi.org/10.1016/B978-0-12-803684-6.00005-6

    Article  Google Scholar 

  43. Moon HG, Jang YS, Cho C, Lee J, Binkley R, Lee SY (2016) One hundred years of clostridial butanol fermentation. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw001

    Article  PubMed  Google Scholar 

  44. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Müller N, Schleheck D, Schink B (2009) Involvement of NADH: acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J. Bacteriol 191:6167–6177. https://doi.org/10.1128/JB.01605-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Nei M, Zhang J (2006) Evolutionary distance: estimation. In: Encyclopedia of life sciences. Wiley, Chichester.

  47. Reynolds CR, Islam SA, Sternberg MJE (2018) EzMol: A web server wizard for the rapid visualisation and image production of protein and nucleic acid structures. J Mol Biol 430:2244–8

    CAS  Article  Google Scholar 

  48. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277. https://doi.org/10.1016/S0168-9525(00)02024-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Schmidt A, Müller N, Schink B et al (2013) A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS ONE. https://doi.org/10.1371/journal.pone.0056905

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605. https://doi.org/10.1371/journal.pcbi.1000605

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Seeliger D, De Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24:417–422. https://doi.org/10.1007/s10822-010-9352-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase down regulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng 102:38–49. https://doi.org/10.1002/bit.22058

    CAS  Article  PubMed  Google Scholar 

  53. Stim-Herndon KP, Petersen DJ, Bennett GN (1995) Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene 154:81–85. https://doi.org/10.1016/0378-1119(94)00838-J

    CAS  Article  PubMed  Google Scholar 

  54. Tanaka Y, Kasahara K, Hirose Y et al (2017) Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance. J Biosci Bioeng 124:400–407. https://doi.org/10.1016/j.jbiosc.2017.05.003

    CAS  Article  PubMed  Google Scholar 

  55. Williamson G, Engel PC (1984) Butyryl-CoA dehydrogenase from Megasphaera elsdenii. Specificity of the catalytic reaction. Biochem J 218:521–529

    CAS  Article  Google Scholar 

  56. Wong BJ, Gerlt JA (2004) Evolution of function in the crotonase superfamily:(3 S)-methylglutaconyl-CoA hydratase from Pseudomonas putida. Biochemistry 43:4646–4654. https://doi.org/10.1021/bi0360307

    CAS  Article  PubMed  Google Scholar 

  57. Xu Y, Li H, Jin YH et al (2014) Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate. PloS one, 9(4). doi: https://doi.org/10.1371/journal.pone.0095965.

  58. Yadav PK, Singh G, Gautam B et al (2013) Molecular modeling, dynamics studies and virtual screening of Fructose 1, 6 biphosphate aldolase-II in community acquired-methicillin resistant Staphylococcus aureus (CA-MRSA). Bioinformation 9:158. https://doi.org/10.6026/97320630009158

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Yu L, Lin M et al (2017) n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Bioresour Technol 233:51–57. https://doi.org/10.1016/j.biortech.2017.02.079

    CAS  Article  PubMed  Google Scholar 

  60. Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biot 36:1127–1138

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Wriddhiman Ghosh (Bose Institute, India) for his helpful suggestions in manuscript preparation and for providing all kind of computational facility. JS received fellowships from Council of Scientific and Industrial Research, GoI.

Author information

Affiliations

Authors

Contributions

SM conceived the study, designed the experiments, interpreted the results and wrote the paper. SM, UD and JS performed bioinformatics analysis. All authors read and vetted the manuscript.

Corresponding author

Correspondence to Subhrangshu Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Kerry Geiler-Samerotte.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2405 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Debnath, U. & Sarkar, J. Structural-Genetic Characterization Of Novel Butaryl co-A Dehydrogenase and Proposition of Butanol Biosynthesis Pathway in Pusillimonas ginsengisoli SBSA. J Mol Evol 89, 81–94 (2021). https://doi.org/10.1007/s00239-020-09989-3

Download citation