Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature

Abstract

Over twenty years ago Galtier and Lobry published a manuscript entitled “Relationships between Genomic G + C Content, RNA Secondary Structure, and Optimal Growth Temperature” in the Journal of Molecular Evolution that showcased the lack of a relationship between genomic G + C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. Galtier and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, tRNAs) and OGT, and in this case a clear relationship emerged. Increasing structured RNA G + C content (particularly in regions that are double-stranded) correlates with increased OGT. Both of these fundamental relationships have withstood test of many additional sequences and spawned a variety of different applications that include prediction of OGT from rRNA sequence and computational ncRNA identification approaches. In this work, I present the motivation behind Galtier and Lobry’s original paper and the larger questions addressed by the work, how these questions have evolved over the last two decades, and the impact of Galtier and Lobry’s manuscript in fields beyond these questions.

This is a preview of subscription content, access via your institution.

References

  1. Akanuma S (2017) Characterization of reconstructed ancestral proteins suggests a change in temperature of the ancient biosphere. Life. https://doi.org/10.3390/life7030033

    Article  PubMed  PubMed Central  Google Scholar 

  2. Albrecht-Buehler G (2006) Asymptotically increasing compliance of genomes with Chargaff’s second parity rules through inversions and inverted transpositions. Proc Natl Acad Sci USA 103:17828–17833. https://doi.org/10.1073/pnas.0605553103

    Article  PubMed  CAS  Google Scholar 

  3. Albrecht-Buehler G (2007) Inversions and inverted transpositions as the basis for an almost universal “format” of genome sequences. Genomics 90:297–305. https://doi.org/10.1016/j.ygeno.2007.05.010

    Article  PubMed  CAS  Google Scholar 

  4. Baisnée P-F, Hampson S, Baldi P (2002) Why are complementary DNA strands symmetric? Bioinformatics 18:1021–1033. https://doi.org/10.1093/bioinformatics/18.8.1021

    Article  PubMed  Google Scholar 

  5. Bell SJ, Forsdyke DR (1999) Deviations from Chargaff's second parity rule correlate with direction of transcription. J Theor Biol 197:63–76. https://doi.org/10.1006/jtbi.1998.0858

    Article  PubMed  CAS  Google Scholar 

  6. Bohlin J, Skjerve E, Ussery DW (2008) Investigations of oligonucleotide usage variance within and between prokaryotes. PLoS Comput Biol 4:e1000057–e1000059. https://doi.org/10.1371/journal.pcbi.1000057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bohlin J, Snipen L, Hardy SP et al (2010) Analysis of intra-genomic GC content homogeneity within prokaryotes. BMC Genomics 11:464–468. https://doi.org/10.1186/1471-2164-11-464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bohlin J, Eldholm V, Pettersson JHO et al (2017) The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics 18:151–211. https://doi.org/10.1186/s12864-017-3543-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bohlin J, Eldholm V, Brynildsrud O et al (2018) Modeling of the GC content of the substituted bases in bacterial core genomes. BMC Genomics 19:589–596. https://doi.org/10.1186/s12864-018-4984-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Boussau B, Blanquart S, Necsulea A et al (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456:942–945. https://doi.org/10.1038/nature07393

    Article  PubMed  CAS  Google Scholar 

  11. Carter RJ, Dubchak I, Holbrook SR (2001) A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res 29:3928–3938. https://doi.org/10.1093/nar/29.19.3928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chargaff E (1951) Structure and function of nucleic acids as cell constituents. Fed Proc 10:654–659

    PubMed  CAS  Google Scholar 

  13. Dalgaard JZ, Garret RA (1993) Chapter 17 Archaeal hyperthermophile genes. In: Kates M, Kushner DJ (eds) The biochemistry of archaea (Archaebacteria). Elsevier, Amsterdam, pp 535–563

    Google Scholar 

  14. Di Giulio M (2000) The universal ancestor lived in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213. https://doi.org/10.1006/jtbi.2000.1086

    Article  PubMed  CAS  Google Scholar 

  15. Di Giulio M (2001) The universal ancestor was a thermophile or a hyperthermophile. Gene 281:11–17. https://doi.org/10.1016/s0378-1119(01)00781-8

    Article  PubMed  Google Scholar 

  16. Di Giulio M (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436. https://doi.org/10.1006/jtbi.2003.3197

    Article  PubMed  Google Scholar 

  17. Dillon MM, Sung W, Lynch M, Cooper VS (2015) The rate and molecular spectrum of spontaneous mutations in the GC-rich multichromosome genome of Burkholderia cenocepacia. Genetics 200:935–946. https://doi.org/10.1534/genetics.115.176834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dutta A, Chaudhuri K (2010) Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation. FEMS Microbiol Lett 305:100–108. https://doi.org/10.1111/j.1574-6968.2010.01922.x

    Article  PubMed  CAS  Google Scholar 

  19. Forsdyke DR (1995) Relative roles of primary sequence and (G + C)% in determining the hierarchy of frequencies of complementary trinucleotide pairs in DNAs of different species. J Mol Evol 41:573–581. https://doi.org/10.1007/BF00175815

    Article  PubMed  CAS  Google Scholar 

  20. Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636. https://doi.org/10.1007/pl00006186

    Article  PubMed  CAS  Google Scholar 

  21. Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221. https://doi.org/10.1126/science.283.5399.220

    Article  PubMed  CAS  Google Scholar 

  22. Groussin M, Gouy M (2011) Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol Biol Evol 28:2661–2674. https://doi.org/10.1093/molbev/msr098

    Article  PubMed  CAS  Google Scholar 

  23. Hershberg R, Petrov DA (2010) Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6:e1001115. https://doi.org/10.1371/journal.pgen.1001115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hickey DA, Singer GAC (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5:117–127. https://doi.org/10.1186/gb-2004-5-10-117

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS Genet 6:e1001107. https://doi.org/10.1371/journal.pgen.1001107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268:493–497. https://doi.org/10.1098/rspb.2000.1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Karkas JD, Rudner R, Chargaff E (1968) Separation of B. subtilis DNA into complementary strands. II. Template functions and composition as determined by transcription with RNA polymerase. Proc Natl Acad Sci USA 60:915–920. https://doi.org/10.1073/pnas.60.3.915

    Article  PubMed  CAS  Google Scholar 

  28. Khachane AN, Timmis KN, dos Santos VAPM (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 33:4016–4022. https://doi.org/10.1093/nar/gki714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kimura H, Sugihara M, Kato K, Hanada S (2006) Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments. AEM 72:21–27. https://doi.org/10.1128/AEM.72.1.21-27.2006

    Article  CAS  Google Scholar 

  30. Kimura H, Mori K, Tashiro T et al (2010) Culture-independent estimation of optimal and maximum growth temperatures of archaea in subsurface habitats based on the G+C content in 16S rRNA gene sequences. Geomicrobiol J 27:114–122. https://doi.org/10.1080/01490450903456699

    Article  CAS  Google Scholar 

  31. Kimura H, Mori K, Yamanaka T, Ishibashi JI (2013) Growth temperatures of archaeal communities can be estimated from the guanine-plus-cytosine contents of 16S rRNA gene fragments. Environ Microbiol Rep 5:468–474. https://doi.org/10.1111/1758-2229.12035

    Article  PubMed  CAS  Google Scholar 

  32. Klein RJ, Misulovin Z, Eddy SR (2002) Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci USA 99:7542–7547. https://doi.org/10.1073/pnas.112063799

    Article  PubMed  CAS  Google Scholar 

  33. Knight RD, Freeland SJ, Landweber LF (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol 2:RESEARCH0010. https://doi.org/10.1186/gb-2001-2-4-research0010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Larsson P, Hinas A, Ardell DH et al (2008) De novo search for non-coding RNA genes in the AT-rich genome of Dictyostelium discoideum: performance of Markov-dependent genome feature scoring. Genome Res 18:888–899. https://doi.org/10.1101/gr.069104.107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lassalle F, Périan S, Bataillon T et al (2015) GC-Content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLoS Genet 11:e1004941. https://doi.org/10.1371/journal.pgen.1004941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li G, Rabe KS, Nielsen J, Engqvist MKM (2019) Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synth Biol 8:1411–1420. https://doi.org/10.1021/acssynbio.9b00099

    Article  PubMed  CAS  Google Scholar 

  37. Lind PA, Andersson DI (2008) Whole-genome mutational biases in bacteria. Proc Natl Acad Sci USA 105:17878–17883. https://doi.org/10.1073/pnas.0804445105

    Article  PubMed  Google Scholar 

  38. Mallik S, Kundu S (2013) A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation. PLoS ONE 8:e69898. https://doi.org/10.1371/journal.pone.0069898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. https://doi.org/10.1038/nrmicro2670

    Article  PubMed  CAS  Google Scholar 

  40. McLean MJ, Wolfe KH, Devine KM (1998) Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol 47:691–696. https://doi.org/10.1007/pl00006428

    Article  PubMed  CAS  Google Scholar 

  41. Meyer MM, Ames TD, Smith DP, Weinberg Z, Schwalbach MS, Giovannoni SJ, Breaker RR (2009) Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'. BMC Genomics 10:268. https://doi.org/10.1186/1471-2164-10-268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Miralles F (2010) Compositional properties and thermal adaptation of SRP-RNA in bacteria and archaea. J Mol Evol 70:181–189. https://doi.org/10.1007/s00239-009-9319-1

    Article  PubMed  CAS  Google Scholar 

  43. Mitchell D, Bridge R (2006) A test of Chargaff’s second rule. Biochem Biophys Res Commun 340:90–94. https://doi.org/10.1016/j.bbrc.2005.11.160

    Article  PubMed  CAS  Google Scholar 

  44. Mugal CF, Weber CC, Ellegren H (2015) GC-biased gene conversion links the recombination landscape and demography to genomic base composition. BioEssays 37:1317–1326. https://doi.org/10.1002/bies.201500058

    Article  PubMed  CAS  Google Scholar 

  45. Musto H, Naya H, Zavala A et al (2004) Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 573:73–77. https://doi.org/10.1016/j.febslet.2004.07.056

    Article  PubMed  CAS  Google Scholar 

  46. Musto H, Naya H, Zavala A et al (2006) Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 347:1–3. https://doi.org/10.1016/j.bbrc.2006.06.054

    Article  PubMed  CAS  Google Scholar 

  47. Nakashima H, Fukuchi S, Nishikawa K (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem 133:507–513. https://doi.org/10.1093/jb/mvg067

    Article  PubMed  CAS  Google Scholar 

  48. Naya H, Romero H, Zavala A et al (2002) Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol 55:260–264. https://doi.org/10.1007/s00239-002-2323-3

    Article  PubMed  CAS  Google Scholar 

  49. Nikolaou C, Almirantis Y (2005) A study on the correlation of nucleotide skews and the positioning of the origin of replication: different modes of replication in bacterial species. Nucleic Acids Res 33:6816–6822. https://doi.org/10.1093/nar/gki988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nikolaou C, Almirantis Y (2006) Deviations from Chargaff’s second parity rule in organellar DNA Insights into the evolution of organellar genomes. Gene 381:34–41. https://doi.org/10.1016/j.gene.2006.06.010

    Article  PubMed  CAS  Google Scholar 

  51. Okamura K, Wei J, Scherer SW (2007) Evolutionary implications of inversions that have caused intra-strand parity in DNA. BMC Genomics 8:160. https://doi.org/10.1186/1471-2164-8-160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Qi D, Cuticchia AJ (2001) Compositional symmetries in complete genomes. Bioinformatics 17:557–559. https://doi.org/10.1093/bioinformatics/17.6.557

    Article  PubMed  CAS  Google Scholar 

  53. Ragon M, Van Driessche AES, García-Ruíz JM et al (2013) Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Front Microbiol 4:37. https://doi.org/10.3389/fmicb.2013.00037

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reichenberger ER, Rosen G, Hershberg U, Hershberg R (2015) Prokaryotic nucleotide composition is shaped by both phylogeny and the environment. Genome Biol Evol 7:1380–1389. https://doi.org/10.1093/gbe/evv063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rivas E, Eddy SR (2000) Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16:583–605. https://doi.org/10.1093/bioinformatics/16.7.583

    Article  PubMed  CAS  Google Scholar 

  56. Romero H, Pereira E, Naya H, Musto H (2009) Oxygen and guanine-cytosine profiles in marine environments. J Mol Evol 69:203–206. https://doi.org/10.1007/s00239-009-9230-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rudner R, Karkas JD, Chargaff E (1968a) Separation of B. subtilis DNA into complementary strands, I. Biological properties. Proc Natl Acad Sci USA 60:630–635. https://doi.org/10.1073/pnas.60.2.630

    Article  PubMed  CAS  Google Scholar 

  58. Rudner R, Karkas JD, Chargaff E (1968b) Separation of B. subtilis DNA into complementary strands. 3. Direct analysis. Proc Natl Acad Sci USA 60:921–922. https://doi.org/10.1073/pnas.60.3.921

    Article  PubMed  CAS  Google Scholar 

  59. Sato Y, Kimura H (2019) Temperature-dependent expression of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula strains of the class Halobacteria. Antonie Van Leeuwenhoek 112:187–201. https://doi.org/10.1007/s10482-018-1144-3

    Article  PubMed  CAS  Google Scholar 

  60. Sato Y, Fujiwara T, Kimura H (2017) Expression and function of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula hispanica at different temperatures. Front Microbiol 8:482. https://doi.org/10.3389/fmicb.2017.00482

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sauer DB, Wang D-N (2019) Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 35:3224–3231. https://doi.org/10.1093/bioinformatics/btz059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schattner P (2002) Searching for RNA genes using base-composition statistics. Nucleic Acids Res 30:2076–2082. https://doi.org/10.1093/nar/30.9.2076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Shporer S, Chor B, Rosset S, Horn D (2016) Inversion symmetry of DNA k-mer counts: validity and deviations. BMC Genomics 17:696–713. https://doi.org/10.1186/s12864-016-3012-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Singer GA, Hickey DA (2000) Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. Mol Biol Evol 17:1581–1588. https://doi.org/10.1093/oxfordjournals.molbev.a026257

    Article  PubMed  CAS  Google Scholar 

  65. Sprinzl M, Steegborn C, Hübel F, Steinberg S (1996) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 24:68–72. https://doi.org/10.1093/nar/24.1.68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Staley JT, Bryant MP, Pfenning N, Holt J (1984) Bergey’s manual of systematic bacteriology. The Williams & Wilkins Co, Baltimore

    Google Scholar 

  67. Stav S, Atilho RM, Mirihana Arachchilage G, Nguyen G, Higgs G, Breaker RR (2019) Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol 19:66. https://doi.org/10.1186/s12866-019-1433-7

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48:582–592. https://doi.org/10.1073/pnas.48.4.582

    Article  PubMed  CAS  Google Scholar 

  69. Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    Article  CAS  Google Scholar 

  70. Sueoka N (1999) Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol 49:49–62. https://doi.org/10.1007/pl00006534

    Article  PubMed  CAS  Google Scholar 

  71. Szybalski W, Kubinski H, Sheldrick P (1966) Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA synthesis. Cold Spring Harb Symp Quant Biol 31:123–127. https://doi.org/10.1101/sqb.1966.031.01.019

    Article  PubMed  CAS  Google Scholar 

  72. Touchon M, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2004) Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978. https://doi.org/10.1093/nar/gkh823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Upadhyay R, Bawankar P, Malhotra D, Patankar S (2005) A screen for conserved sequences with biased base composition identifies noncoding RNAs in the A-T rich genome of Plasmodium falciparum. Mol Biochem Parasitol 144:149–158. https://doi.org/10.1016/j.molbiopara.2005.08.012

    Article  PubMed  CAS  Google Scholar 

  74. Van de Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494. https://doi.org/10.1093/nar/22.17.3488

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang H-C, Susko E, Roger AJ (2006) On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 342:681–684. https://doi.org/10.1016/j.bbrc.2006.02.037

    Article  PubMed  CAS  Google Scholar 

  76. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738. https://doi.org/10.1038/171737a0

    Article  PubMed  CAS  Google Scholar 

  77. Weiss MC, Sousa FL, Mrnjavac N et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116–16118. https://doi.org/10.1038/nmicrobiol.2016.116

    Article  PubMed  CAS  Google Scholar 

  78. Weissman JL, Fagan WF, Johnson PLF (2019) Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genet 15:e1008493. https://doi.org/10.1371/journal.pgen.1008493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wielgoss S, Barrick JE, Tenaillon O et al (2011) Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 (Bethesda) 1:183–186. https://doi.org/10.1534/g3.111.000406

    Article  CAS  Google Scholar 

  80. Wu H, Zhang Z, Hu S, Yu J (2012) On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct 7:2–16. https://doi.org/10.1186/1745-6150-7-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhao X, Zhang Z, Yan J, Yu J (2007) GC content variability of eubacteria is governed by the pol III alpha subunit. Biochem Biophys Res Commun 356:20–25. https://doi.org/10.1016/j.bbrc.2007.02.109

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This material is based upon work supported by the National Science Foundation (NSF) grant MCB: 1715440 to MMM. The opinions, findings, and conclusions expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Meyer.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Handling editor: Aaron Goldman

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyer, M.M. Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature. J Mol Evol 89, 165–171 (2021). https://doi.org/10.1007/s00239-020-09974-w

Download citation

Keywords

  • rRNA
  • Genome composition
  • Thermoadaptation