Skip to main content
Log in

Richard Dickerson, Molecular Clocks, and Rates of Protein Evolution

  • Commentary
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Proteins approximately behave as molecular clocks, accumulating amino acid replacements at a more or less constant rate. Nonetheless, each protein displays a characteristic rate of evolution: whereas some proteins remain largely unaltered over large periods of time, others can rapidly accumulate amino acid replacements. An article by Richard Dickerson, published in the first issue of the Journal of Molecular Evolution (J Mol Evol 1:26–45, 1971), described the first analysis in which the rates of evolution of many proteins were compared, and the differences were interpreted in the light of their function. When comparing the sequences of fibrinopeptides, hemoglobin, and cytochrome c of different species, he observed a linear relationship between the number of amino acid replacements and divergence time. Remarkably, fibrinopeptides had evolved fast, cytochrome c had evolved slowly, and hemoglobin exhibited an intermediate rate of evolution. As the Journal of Molecular Evolution celebrates its 50th anniversary, I highlight this landmark article and reflect on its impact on the field of Molecular Evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alvarez-Ponce D (2012) The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution. BMC Evol Biiol 12(1):192

    CAS  Google Scholar 

  • Alvarez-Ponce D (2014) Why proteins evolve at different rates: the determinants of proteins’ rates of evolution. In: Fares M (ed) Natural selection: methods and applications. CRC Press, London, pp 126–178

    Google Scholar 

  • Alvarez-Ponce D, Sabater-Muñoz B, Toft C, Ruiz-González MX, Fares MA (2016) Essentiality is a strong determinant of protein rates of evolution during mutation accumulation experiments in Escherichia coli. Genome Biol Evol 8(9):2914–2927

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Ponce D, Feyertag F, Chakraborty S (2017) Position matters: network centrality considerably impacts rates of protein evolution in the human protein–protein interaction network. Genome Biol Evol 9(6):1742–1756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Ponce D, Aguilar-Rodríguez J, Fares MA (2019) Molecular chaperones accelerate the evolution of their protein clients in yeast. Genome Biol Evol 11(8):2360–2375

    PubMed  PubMed Central  CAS  Google Scholar 

  • Baum DA, Futuyma DJ, Hoekstra HE et al (2013) The Princeton guide to evolution. Princeton University Press, Princeton

    Google Scholar 

  • Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22(8):437–446

    PubMed  CAS  Google Scholar 

  • Bloom JD, Drummond DA, Arnold FH, Wilke CO (2006a) Structural determinants of the rate of protein evolution in yeast. Mol Biol Evol 23:1751–1761

    PubMed  CAS  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006b) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103:5869–5874

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bogumil D, Dagan T (2012) Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51:9941–9953

    PubMed  CAS  Google Scholar 

  • Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110

    PubMed  CAS  Google Scholar 

  • Dickerson RE (1971) The structure of cytochrome c and the rates of molecular evolution. J Mol Evol 1:26–45

    PubMed  CAS  Google Scholar 

  • Dickerson RE, Geis I (1969) The structure and action of proteins. Harper & Row, New York

    Google Scholar 

  • Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) Ferricytochrome c: I. general features of the horse and bonito proteins at 2.8 Å resolution. J Biol Chem 246(5):1511–1535

    PubMed  CAS  Google Scholar 

  • Dickerson RE, Takano T, Kallai OB, Samson L (1972) Ferricytochrome c: II. Chain flexibility and a possible reduction mechanism. In: Åkeson Å, Ehrenberg A (eds) Structure and function of oxidation–reduction enzymes. Pergamon, Stockholm, pp 69–83

    Google Scholar 

  • Doolittle RF, Blombäck B (1964) Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature 202(4928):147–152

    PubMed  CAS  Google Scholar 

  • Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A 102:14338–14343

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:68–74

    PubMed  CAS  Google Scholar 

  • Feyertag F, Alvarez-Ponce D (2017) Disulfide bonds enable accelerated protein evolution. Mol Biol Evol 34(8):1833–1837

    PubMed  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    PubMed  CAS  Google Scholar 

  • Goldman N, Thorne JL, Jones DT (1998) Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 149:445–458

    PubMed  PubMed Central  CAS  Google Scholar 

  • Greenberg AJ, Stockwell SR, Clark AG (2008) Evolutionary constraint and adaptation in the metabolic network of Drosophila. Mol Biol Evol 25:2537–2546

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hamilton MB (2009) Population genetics. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Hurst LD, Smith NG (1999) Do essential genes evolve slowly? Curr Biol 9:747–750

    PubMed  CAS  Google Scholar 

  • Jordan IK, Wolf YI, Koonin EV (2004) Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 4:22

    PubMed  PubMed Central  Google Scholar 

  • Julenius K, Pedersen AG (2006) Protein evolution is faster outside the cell. Mol Biol Evol 23:2039–2048

    PubMed  CAS  Google Scholar 

  • Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314(5807):1938–1941

    PubMed  CAS  Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6(8):654–662

    PubMed  CAS  Google Scholar 

  • Levy ED, De S, Teichmann SA (2012) Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proc Natl Acad Sci U S A 109:20461–20466

    PubMed  PubMed Central  CAS  Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome c. Proc Natl Acad Sci U S A 50:672–679

    PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959-1965. J Hist Biol 1:155–178

    Google Scholar 

  • Nolan C, Margoliash E (1968) Comparative aspects of primary structures of proteins. Annu Rev Biochem 37(1):727–791

    PubMed  CAS  Google Scholar 

  • Pál C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158:927–931

    PubMed  PubMed Central  Google Scholar 

  • Pál C, Papp B, Lercher MJ (2006) An integrated view of protein evolution. Nat Rev Genet 7:337–348

    PubMed  Google Scholar 

  • Park C, Chen X, Yang JR, Zhang J (2013) Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A 110:E678–E686

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pegueroles C, Laurie S, Albà MM (2013) Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Mol Biol Evol 30(8):1830–1842

    PubMed  CAS  Google Scholar 

  • Pevsner J (2009) Bioinformatics and functional genomics. Wiley Blackwell, Hoboken

    Google Scholar 

  • Robinson LM, Boland JR, Braverman JM (2016) Revisiting a classic study of the molecular clock. J Mol Evol 82(2–3):110–116

    PubMed  CAS  Google Scholar 

  • Ruse M, Travis J (2009) Evolution: the first four billion years. Belknap, Cambridge

    Google Scholar 

  • Russell PJ (2003) Essential iGenetics. Benjamin Cummings, San Francisco

    Google Scholar 

  • Toft C, Fares MA (2010) Structural calibration of the rates of amino acid evolution in a search for Darwin in drifting biological systems. Mol Biol Evol 27:2375–2385

    PubMed  CAS  Google Scholar 

  • van der Lee R, Wiel L, van Dam T, Huynen MA (2017) Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts. Nucleic Acids Res 45(18):10634–10648

    PubMed  PubMed Central  Google Scholar 

  • Yang JR, Liao BY, Zhuang SM, Zhang J (2012) Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proc Natl Acad Sci U S A 109:E831–E840

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Yang JR (2015) Determinants of the rate of protein sequence evolution. Nat Rev Genet 16:409–420

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zuckerkandl E, Pauling LB (1962) Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Pauling LB (1965) Evolutionary divergence and convergence in proteins. Evol Genes Proteins 97:166

    Google Scholar 

Download references

Acknowledgements

Research in my lab is supported by grant MCB 1818288 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alvarez-Ponce.

Additional information

Handling editor: Aaron Goldman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Ponce, D. Richard Dickerson, Molecular Clocks, and Rates of Protein Evolution. J Mol Evol 89, 122–126 (2021). https://doi.org/10.1007/s00239-020-09973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09973-x

Keywords

Navigation