Protein Evolution in the Flaviviruses

Abstract

Proteins are commonly used as molecular targets against pathogens such as viruses and bacteria. However, pathogens can evolve rapidly permitting their populations to increase in protein diversity over time and thus escape to the activity of a molecular therapy. Subsequently, in order to design more durable and robust therapies as well as to understand viral evolution in a host and subsequent transmission, it is central to understand the evolution of pathogen proteins. This understanding can enable the detection of protein regions that can be potential targets for therapies and predict the emergence of molecular resistance against therapies. In this direction, two articles published recently in the Journal of Molecular Evolution investigated the evolution of proteomes of diverse flaviviruses, including Zika virus, Dengue virus and West Nile virus. Here I discuss the importance of considering the evolution of viral proteins, with the use of as realistic as possible models and methods that mimic protein evolution, to improve the design of antiviral therapies.

This is a preview of subscription content, log in to check access.

References

  1. Abadi S, Azouri D, Pupko T, Mayrose I (2019) Model selection may not be a mandatory step for phylogeny reconstruction. Nat Commun 10:934

    Article  Google Scholar 

  2. Abascal F, Posada D, Zardoya R (2007) MtArt: a new model of amino acid replacement for Arthropoda. Mol Biol Evol 24:1–5

    CAS  Article  Google Scholar 

  3. Arbiza L, Patricio M, Dopazo H, Posada D (2011) Genome-wide heterogeneity of nucleotide substitution model fit. Genome Biol Evol 3:896–908

    CAS  Article  Google Scholar 

  4. Arenas M (2015) Trends in substitution models of molecular evolution. Front Genet 6:319

    Article  Google Scholar 

  5. Arenas M, Bastolla U (2020) ProtASR2: ancestral reconstruction of protein sequences accounting for folding stability. Methods Ecol Evol 11:248–257

    Article  Google Scholar 

  6. Arenas M, Posada D (2010) Computational design of centralized HIV-1 genes. Curr HIV Res 8:613–621

    CAS  Article  Google Scholar 

  7. Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Perez-Losada M (2018) Mutation and recombination in pathogen evolution: relevance, methods and controversies. Infect Genet Evol 63:295–306

    CAS  Article  Google Scholar 

  8. Bastolla U, Arenas M (2019) The influence of protein stability on sequence evolution: applications to phylogenetic inference. In: Sikosek T (ed) Computational methods in protein evolution. Springer, New York, pp 215–231

    Google Scholar 

  9. Bordner AJ, Mittelmann HD (2013) A new formulation of protein evolutionary models that account for structural constraints. Mol Biol Evol 31:736–749

    Article  Google Scholar 

  10. Chong B, Li M, Li T, Yu M, Zhang Y, Liu Z (2018) Conservation of potentially druggable cavities in intrinsically disordered proteins. ACS Omega 3:15643–15652

    CAS  Article  Google Scholar 

  11. Dang CC, Le QS, Gascuel O, Le VS (2010) FLU, an amino acid substitution model for influenza proteins. BMC Evol Biol 10:99

    Article  Google Scholar 

  12. de Wispelaere M, Lian W, Potisopon S, Li PC, Jang J, Ficarro SB, Clark MJ, Zhu X, Kaplan JB, Pitts JD et al (2018) Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem Biol 25(1006–1016):e1008

    Google Scholar 

  13. Del Amparo R, Vicens A, Arenas M (2020) The influence of heterogeneous codon frequencies along sequences on the estimation of molecular adaptation. Bioinformatics 36:430–436

    PubMed  Google Scholar 

  14. Echave J, Wilke CO (2017) Biophysical models of protein evolution: understanding the patterns of evolutionary sequence divergence. Annu Rev Biophys 46:85–103

    CAS  Article  Google Scholar 

  15. Echave J, Spielman SJ, Wilke CO (2016) Causes of evolutionary rate variation among protein sites. Nat Rev Genet 17:109–121

    CAS  Article  Google Scholar 

  16. Gerth M (2019) Neglecting model selection alters phylogenetic inference. bioRxiv. https://doi.org/10.1101/849018v1.abstract

    Article  Google Scholar 

  17. Gould EA, Solomon T (2008) Pathogenic flaviviruses. Lancet 371:500–509

    CAS  Article  Google Scholar 

  18. Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342

    Article  Google Scholar 

  19. Ishikawa T, Yamanaka A, Konishi E (2014) A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 32:1326–1337

    CAS  Article  Google Scholar 

  20. Jiménez-Santos MJ, Arenas M, Bastolla U (2018) Influence of mutation bias and hydrophobicity on the substitution rates and sequence entropies of protein evolution. PeerJ 6:e5549

    Article  Google Scholar 

  21. Kaehler BD, Yap VB, Huttley GA (2017) Standard codon substitution models overestimate purifying selection for nonstationary data. Genome Biol Evol 9:134–149

    PubMed  PubMed Central  Google Scholar 

  22. Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29

    Article  Google Scholar 

  23. Le TK, Vinh LS (2020) FLAVI: an amino acid substitution model for flaviviruses. J Mol Evol. In press

  24. Lemey P, Rambaut A, Pybus OG (2006) HIV evolutionary dynamics within and among hosts. AIDS Rev 8:125–140

    PubMed  Google Scholar 

  25. Lemmon AR, Moriarty EC (2004) The importance of proper model assumption in bayesian phylogenetics. Syst Biol 53:265–277

    Article  Google Scholar 

  26. Liberles DA, Teufel AI, Liu L, Stadler T (2013) On the need for mechanistic models in computational genomics and metagenomics. Genome Biol Evol 5:2008–2018

    Article  Google Scholar 

  27. Luo D, Vasudevan SG, Lescar J (2015) The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 118:148–158

    CAS  Article  Google Scholar 

  28. Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, Kosakovsky Pond SL (2007) HIV-specific probabilistic models of protein evolution. PLoS ONE 2:e503

    Article  Google Scholar 

  29. Nunez-Castilla J, Rahaman J, Ahrens JB, Balbin CA, Siltberg-Liberles J (2020) Exploring evolutionary constraints in the proteomes of Zika, Dengue and other flaviviruses to find fitness-critical sites. J Mol Evol 88:399–414

    CAS  Article  Google Scholar 

  30. Ortiz JF, MacDonald ML, Masterson P, Uversky VN, Siltberg-Liberles J (2013) Rapid evolutionary dynamics of structural disorder as a potential driving force for biological divergence in flaviviruses. Genome Biol Evol 5:504–513

    CAS  Article  Google Scholar 

  31. Ribeiro AJM, Tyzack JD, Borkakoti N, Holliday GL, Thornton JM (2020) A global analysis of function and conservation of catalytic residues in enzymes. J Biol Chem 295:314–324

    Article  Google Scholar 

  32. Spielman SJ, Kosakovsky Pond SL (2018) Relative evolutionary rates in proteins are largely insensitive to the substitution model. Mol Biol Evol 35:2307–2317

    CAS  Article  Google Scholar 

  33. Voskarides K (2020) Animal-to-human viral transitions: is SARS-CoV-2 an evolutionary successful one? J Mol Evol. In press

  34. Wang S, Liu Y, Guo J, Wang P, Zhang L, Xiao G, Wang W (2017) Screening of FDA-approved drugs for inhibitors of Japanese encephalitis virus infection. J Virol 91:e01055-17

    Article  Google Scholar 

  35. Wilke CO (2012) Bringing molecules back into molecular evolution. PLoS Comput Biol 8:e1002572

    CAS  Article  Google Scholar 

  36. Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13:5–18

    CAS  Article  Google Scholar 

  37. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30:137–149

    CAS  Article  Google Scholar 

Download references

Acknowledgments

I thank the Grants “RYC-2015-18241” (MA) from the Spanish Ministry of Economy and Competitivity and “ED431F 2018/08” (MA) from the Xunta de Galicia that support my research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Arenas.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Handling editor: David Liberles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arenas, M. Protein Evolution in the Flaviviruses. J Mol Evol 88, 473–476 (2020). https://doi.org/10.1007/s00239-020-09953-1

Download citation

Keywords

  • Protein evolution
  • Virus evolution
  • Flavivirus
  • Molecular adaptation
  • Substitution process
  • Antiviral therapy