Skip to main content
Log in

Adaptive Evolution of C-Type Lysozyme in Vampire Bats

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In mammals, chicken-type (c-type) lysozymes are part of the innate immune system, killing bacteria by degrading peptidoglycan in their cell walls. Many of the studies on the evolution of c-type lysozymes have focused on its new digestive function, including the duplicated stomach lysozymes in ruminants. Similarly, in bats, gene duplications and subsequent adaptive evolution of c-type lysozyme have been reported in a clade of insectivorous species, which might have been driven by the need to digest chitin. However, no studies on the evolution of c-type lysozyme have been carried out in the second largest and dietary diverse bat family Phyllostomidae, which includes insectivorous, frugivorous, nectarivorous and sanguivorous species. Here, we sequenced and analyzed c-type lysozyme genes from four phyllostomid bats, the common vampire bat, the white-winged vampire bat, the lesser long-nosed bat and the big fruit-eating bat. Only a single lysozyme gene was identified in each of these species. Evidence for positive selection on mature lysozyme was found on lineages leading to vampire bats, but not other bats with single copy lysozyme genes. Moreover, several amino acid substitutions found in mature lysozymes from the sanguivorous clade are predicted to have functional impacts, adding further evidence for the adaptive evolution of lysozyme in vampire bats. Functional adaptation of vampire bat lysozymes could be associated with anti-microbial defense, possibly driven by the specialized sanguivory-related habits of vampire bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker DJ, Czirjak GA, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Fenton MB, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG (2018) Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos Trans R Soc B 373:20170089

    Google Scholar 

  • Benavides JA, Shiva C, Virhuez M, Tello C, Appelgren A, Vendrell J, Solassol J, Godreuil S, Streicker DG (2018) Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. Zoonoses Public Health 65:454–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bielawski JP, Yang Z (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59:121–132

    CAS  PubMed  Google Scholar 

  • Bobrowiec PED, Lemes MR, Gribel R (2015) Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. J Mammal 96:54–63

    Google Scholar 

  • Cámara VM, Prieur DJ (1984) Secretion of colonic isozyme of lysozyme in association with cecotrophy of rabbits. Am J Physiol 247:G19–G23

    PubMed  Google Scholar 

  • Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160

    CAS  PubMed  Google Scholar 

  • Carter G, Leffer L (2015) Social grooming in bats: are vampire bats exceptional? PLoS ONE 10:e0138430

    PubMed  PubMed Central  Google Scholar 

  • Carter GG, Coen CE, Stenzler LM, Lovette IJ (2006) Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). Acta Chiropt 8:255–274

    Google Scholar 

  • Carter GG, Wilkinson GS (2015) Carter GG, Wilkinson GS (2015) Social benefits of non-kin food sharing by female vampire bats. Proc R Soc B 282:20152524

    PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datzmann T, von Helversen O, Mayer F (2010) Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evol Biol 10:165

    PubMed  PubMed Central  Google Scholar 

  • Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259:11607–11616

    CAS  PubMed  Google Scholar 

  • Elizalde-Arellano C, López-Vidal JC, Arroyo-Cabrales J, Medellín RA, Laundré JW (2007) Food sharing behavior in the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropt 9:314–319

    Google Scholar 

  • Francischetti IM, Assumpcao TC, Ma D, Li Y, Vicente EC, Uieda W, Ribeiro JM (2013) The "Vampirome": transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J Proteomics 82:288–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  • Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mamm Evol 12:209–246

    Google Scholar 

  • Hammer MF, Schilling JW, Prager EM, Wilson AC (1987) Recruitment of lysozyme as a major enzyme in the mouse gut: duplication, divergence, and regulatory evolution. J Mol Evol 24:272–279

    CAS  PubMed  Google Scholar 

  • Irwin DM (2004) Evolution of cow nonstomach lysozyme genes. Genome 47:1082–1090

    CAS  PubMed  Google Scholar 

  • Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264:11387–11393

    CAS  PubMed  Google Scholar 

  • Ito F, Bernard E, Torres RA (2016) What is for dinner? First report of human blood in the diet of the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropt 18:509–515

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz TH, Fenton MB (2003) Bat ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Leelapaibul W, Bumrungsri S, Pattanawiboon A (2005) Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropt 7:111–119

    Google Scholar 

  • Liu Y, He G, Xu H, Han X, Jones G, Rossiter SJ, Zhang S (2014) Adaptive functional diversification of lysozyme in insectivorous bats. Mol Biol Evol 31:2829–2835

    CAS  PubMed  Google Scholar 

  • Miller-Butterworth CM, Murphy WJ, O'Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, miniopterus. Mol Biol Evol 24:1553–1561

    CAS  PubMed  Google Scholar 

  • Monteiro LR, Nogueira MR (2011) Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol Biol 11:137

    PubMed  PubMed Central  Google Scholar 

  • Pacheco MA, Concepcion JL, Rangel JD, Ruiz MC, Michelangeli F, Dominguez-Bello MG (2007) Stomach lysozymes of the three-toed sloth (Bradypus variegatus), an arboreal folivore from the Neotropics. Comp Biochem Physiol A 147:808–819

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder MD (eds) Mammal species of the world: a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press.

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stewart CB, Wilson AC (1987) Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harb Symp Quant Biol 52:891–899

    CAS  PubMed  Google Scholar 

  • Stockmaier S, Bolnick DI, Page RA, Carter GG (2018) An immune challenge reduces social grooming in vampire bats. Anim Behav 140:141–149

    Google Scholar 

  • Swanson KW, Irwin DM, Wilson AC (1991) Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J Mol Evol 33:418–425

    CAS  PubMed  Google Scholar 

  • Takano K, Yamagata Y, Yutani K (2000) Role of amino acid residues at turns in the conformational stability and folding of human lysozyme. Biochemistry 39:8655–8665

    CAS  PubMed  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weadick CJ, Chang BS (2012) An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 29:1297–1300

    CAS  PubMed  Google Scholar 

  • Wen Y, Irwin DM (1999) Mosaic evolution of ruminant stomach lysozyme genes. Mol Phylogenetics Evol 13:474–482

    CAS  Google Scholar 

  • Wilkinson GS (1984) Reciprocal food sharing in the vampire bat. Nature 308:181

    Google Scholar 

  • Wilkinson GS (1986) Social grooming in the common vampire bat, Desmodus rotundus. Anim Behav 34:1880–1889

    Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    CAS  PubMed  Google Scholar 

  • Zepeda Mendoza ML, Xiong Z, Escalera-Zamudio M, Runge AK, Theze J, Streicker D, Frank HK, Loza-Rubio E, Liu S, Ryder OA, Samaniego Castruita JA, Katzourakis A, Pacheco G, Taboada B, Lober U, Pybus OG, Li Y, Rojas-Anaya E, Bohmann K, Carmona Baez A, Arias CF, Liu S, Greenwood AD, Bertelsen MF, White NE, Bunce M, Zhang G, Sicheritz-Ponten T, Gilbert MPT (2018) Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat Ecol Evol 2:659–668

    PubMed  Google Scholar 

  • Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yi-Hsuan Pan for helpful comments. This work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFD0500300) and the National Natural Science Foundation of China (No. 31601855) to YL.

Author information

Authors and Affiliations

Authors

Contributions

YL conceived the study and contributed experimental reagents/materials; CH, YW and YX did the experiments; CH, YW and YL analyzed the data; CH, YW, YZ, DMI and YL wrote the paper.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David Alvarez-Ponce.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Wei, Y., Zhu, Y. et al. Adaptive Evolution of C-Type Lysozyme in Vampire Bats. J Mol Evol 87, 309–316 (2019). https://doi.org/10.1007/s00239-019-09910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-09910-7

Keywords

Navigation