Journal of Molecular Evolution

, Volume 64, Issue 1, pp 50–60 | Cite as

Evaluating Neanderthal Genetics and Phylogeny

  • Martin B. Hebsgaard
  • Carsten Wiuf
  • M. Thomas P. Gilbert
  • Henrik Glenner
  • Eske Willerslev
Article

Abstract

The retrieval of Neanderthal (Homo neanderthalsensis) mitochondrial DNA is thought to be among the most significant ancient DNA contributions to date, allowing conflicting hypotheses on modern human (Homo sapiens) evolution to be tested directly. Recently, however, both the authenticity of the Neanderthal sequences and their phylogenetic position outside contemporary human diversity have been questioned. Using Bayesian inference and the largest dataset to date, we find strong support for a monophyletic Neanderthal clade outside the diversity of contemporary humans, in agreement with the expectations of the Out-of-Africa replacement model of modern human origin. From average pairwise sequence differences, we obtain support for claims that the first published Neanderthal sequence may include errors due to postmortem damage in the template molecules for PCR. In contrast, we find that recent results implying that the Neanderthal sequences are products of PCR artifacts are not well supported, suffering from inadequate experimental design and a presumably high percentage (>68%) of chimeric sequences due to “jumping PCR” events.

Keywords

Ancient DNA Human evolution Neanderthal DNA Bayesian inference PCR artifacts DNA damage 

Supplementary material

supp.pdf (194 kb)
Supplementary material

References

  1. Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jermin LS, Peacock WJ, Thorne A (2001) Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Proc Natl Acad Sci USA 98:537–542PubMedCrossRefGoogle Scholar
  2. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415PubMedCrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  5. Beauval C, Maureille B, Lacrampe-Cuyaubére F, Serre D, Peressinotto D, Bordes J-G, Cochard D, Couchoud I, Dubrasquet D, Laroulandie V, Lenoble A, Mallye J-B, Pasty S, Primault J, Rohland N, Pääbo S, Trinkaus E (2005) A late Neanderthal femur from Les Rochers-de-Villeneuve, France. Proc Natl Acad Sci USA 102:7085–7090PubMedCrossRefGoogle Scholar
  6. Binladen J, Wiuf C, Gilbert MT, Bunce M, Barnett R, Larson G, Greenwood AD, Haile J, Ho SY, Hansen AJ, Willerslev E (2006) Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics 172:733–741PubMedCrossRefGoogle Scholar
  7. Caldararo N, Gabow S. (2000) Mitochondrial DNA analysis and the place of Neanderthals in Homo. Ancient Biomol 3:135–158Google Scholar
  8. Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million year-old Dominican amber. Science 268:1060–1064PubMedCrossRefGoogle Scholar
  9. Caramelli D, Lalueza–Fox C, Vernesi C, Lari M, Casoli A, Mallegni F, Chiarelli B, Dupanloup I, Bertranpetit J, Barbujani G, Bertorelle G (2003) Evidence for a genetic discontinuity between Neanderthals and 24,000–year–old anatomically modern Europeans. Proc Natl Acad Sci USA 100:6593–6597PubMedCrossRefGoogle Scholar
  10. Collins MJ, Waite ER, van Duin ACT (1999) Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philos Trans Roy Soc Lond B 354:51–64CrossRefGoogle Scholar
  11. Cooper A, Poinar HN (2001) Ancient DNA: do it right or not at all. Science 18:1139Google Scholar
  12. Cooper A, Rambaut A, Macaulay V, Willerslev E, Hansen AJ, Stringer C (2001) Human origins and ancient human DNA. Science 292:1655–1656PubMedCrossRefGoogle Scholar
  13. Currat M, Excoffier L (2004) Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2:2264–2274CrossRefGoogle Scholar
  14. Endicott P, Gilbert MTP, Stringer C, Lalueza-Fox C, Willerslev E, Hansen AJ, Cooper A (2003) The genetic origins of the Andaman Islanders. Am J Hum Genet 72:178–184PubMedCrossRefGoogle Scholar
  15. Finlayson C (2005) Biogeography and evolution of the genus Homo. TREE 20:457–463PubMedGoogle Scholar
  16. Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436PubMedCrossRefGoogle Scholar
  17. Gilbert MTP, Willerslev E, Hansen AJ, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003a) Distribution patterns of post-mortem damage in human mitochondrial DNA. Am J Hum Genet 72:32–47CrossRefGoogle Scholar
  18. Gilbert MTP, Hansen AJ, Willerslev E, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003b) Characterisation of genetic miscoding lesions caused by post-mortem damage. Am J Hum Genet 72:48–61CrossRefGoogle Scholar
  19. Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB (2004) Absence of Y. pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341–354PubMedCrossRefGoogle Scholar
  20. Gilbert MTP, Bandelt H, Hofreiter M, Barnes I (2005a) Assessing ancient DNA studies. TREE 20:541–544Google Scholar
  21. Gilbert MTP, Shapiro B, Drummond A, Cooper A (2005b) Post mortem DNA damage hotspots in Bison (Bison bison and B. bonasus) provide supporting evidence for mutational hotspots in human mitochondria. J Arch Sci 32:1053–1060CrossRefGoogle Scholar
  22. Gilbert MTP, Rudbeck L, Willerslev E, Hansen AJ, Smith C, Penkman KEH, Prangenberg K, Nielsen-Marsh CM, Jans ME, Arthur P, Lynnerup N, Turner-Walker G, Biddle M, Kjølbye-Biddle B, Collins M (2005c) Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. J Arch Sci 32:783–795CrossRefGoogle Scholar
  23. Gilbert MTP, Hansen AJ, Willerslev E, Turner-Walker G, Collins M (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Osteoarch 16:156–164CrossRefGoogle Scholar
  24. Gutiérrez G, Sánchez D, Marín A (2002) A reanalysis of the ancient mitochondrial DNA sequences recovered from Neanderthal bones. Mol Biol Evol 19:1359–1366PubMedGoogle Scholar
  25. Handt O, Höss M, Krings M, Pääbo S (1994) Ancient DNA: methodological challenges. Experientia 50:524–529PubMedCrossRefGoogle Scholar
  26. Handt O, Meyer S, Haeseler A. von (1998) Compilation of human mtDNA control region sequences. Nucleic Acids Res 26:126–129PubMedCrossRefGoogle Scholar
  27. Hansen AJ, Willerslev E, Wiuf C, Mourier T, Arctander P (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18:262–265PubMedGoogle Scholar
  28. Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Available at: 10.1534/genetics.106.057349; accessed April 2, 2006Google Scholar
  29. Harvati K (2003) The Neanderthal taxonomic positions: models of intra- and inter-specific craniofacial variation. J Hum Evol 44:107–132PubMedCrossRefGoogle Scholar
  30. Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13:212–220PubMedCrossRefGoogle Scholar
  31. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001a) Ancient DNA. Nature Rev Genet 2:353–360CrossRefGoogle Scholar
  32. Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001b) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–47799CrossRefGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  34. Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688PubMedCrossRefGoogle Scholar
  35. Kim S, Soltis DE, Soltis PS, Suh Y (2004) DNA sequences from Miocene fossils: an ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae). Am J Bot 91:615–620Google Scholar
  36. Knight A (2003) The phylogenetic relationship of Neanderthal and modern human mitochondrial DNAs based on informative nucleotide sites. J Hum Evol 44:627–632PubMedCrossRefGoogle Scholar
  37. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neanderthal DNA sequences and the origin of modern humans. Cell 90:19–30PubMedCrossRefGoogle Scholar
  38. Krings M, Geisert H, Schmitz RW, Krainitzki H, Pääbo S (1999) DNA sequence of the mitochondrial hypervariable region II from the Neanderthal type specimen. Proc Natl Acad Sci USA 96:5581–5585PubMedCrossRefGoogle Scholar
  39. Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, von Haeseler A, Grossschmidt K, Possnert G, Paunovic M, Pääbo S (2000) A view of Neanderthal genetic diversity. Nature Genet 26:144–146PubMedCrossRefGoogle Scholar
  40. Lalueza-Fox C, Sampietro ML, Caramelli D, Puder Y, Lari M, Calafell F, Martínez-Maza C, Bastir M, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A (2005) Neanderthal evolutionary genetics: mitochondrial DNA data from the Iberian Peninsula. Mol Biol Evol 22:1077–1081PubMedCrossRefGoogle Scholar
  41. Malmström H, Stora J, Dalen L, Holmlund G, Götherström A (2005) Extensive human DNA contamination in extracts from ancient dog bones and teeth. Mol Biol Evol 22:2040–2047PubMedCrossRefGoogle Scholar
  42. Nielsen-Marsh CM, Richards MP, Hauschka PV, homas-Oates JE, Trinkaus E, Pettitt PB, Karavanic I, Poinar H, Collins MJ (2005) Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci USA 102:5594–5599CrossRefGoogle Scholar
  43. Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, Krause J, Detter JC, Pääbo S, Rubin EM (2005) Genomic sequencing of Pleistocene cave bears. Science 309:597–599PubMedCrossRefGoogle Scholar
  44. Nordborg M (1998) On the probability of Neanderthal ancestry. Am J Hum Genet 63:1237–1240PubMedCrossRefGoogle Scholar
  45. Ovchinnikov IV, Gotherstrom A, Romanova GP, Kharitonov VM, Liden K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404:490–493PubMedCrossRefGoogle Scholar
  46. Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264:9709–9712PubMedGoogle Scholar
  47. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679PubMedCrossRefGoogle Scholar
  48. Poinar H, Kuch M, McDonald G, Martin P, Pääbo S (2003) Nuclear gene sequences from a Late Pleistocene sloth coprolite. Curr Biol 13:1150–1152PubMedCrossRefGoogle Scholar
  49. Pusch CM, Bachmann L (2004) Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates non-authentic mitochondrial sequences. Mol Biol Evol 21:957–964PubMedCrossRefGoogle Scholar
  50. Rambaut A, Drummond A (2004) Tracer v1.2. University of Oxford, Oxford, UKGoogle Scholar
  51. Rodríguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501PubMedGoogle Scholar
  52. Schmitz RW, Serre D, Bonani G, Feine S, Hillgruber F, Krainitzki H, Pääbo S, Smith FH (2002) The Neanderthal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proc Natl Acad Sci USA 99:13342–13347PubMedCrossRefGoogle Scholar
  53. Serre D, Hofreiter M, Pääbo S (2004a) Mutations induced by ancient DNA extracts? Mol Biol Evol 21:1463–1467CrossRefGoogle Scholar
  54. Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, Hofreiter M, Possnert G, Pääbo S (2004b) No evidence of Neanderthal mtDNA contribution to early modern humans. PLOS Biol 2:313–317CrossRefGoogle Scholar
  55. Skinner AR, Blackwell BAB, Martin S, Ortega A, Blickstein JIB, Golovanova LV, Doronichev VB (2005) ESR dating at Mezmaiskaya Cave, Russia. Appl Radiat Isotopes 62:219–224CrossRefGoogle Scholar
  56. Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268PubMedCrossRefGoogle Scholar
  57. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, MAGoogle Scholar
  58. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  59. Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  60. Templeton AR (1992) Human origins and analysis of mitochondrial DNA sequences. Science 255:737PubMedCrossRefGoogle Scholar
  61. Templeton A (2002) Out of Africa again and again. Nature 416:45–51PubMedCrossRefGoogle Scholar
  62. von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–329CrossRefGoogle Scholar
  63. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedCrossRefGoogle Scholar
  64. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc Lond B 272:3–16CrossRefGoogle Scholar
  65. Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci USA 96:8017–8021PubMedCrossRefGoogle Scholar
  66. Willerslev E, Hansen AJ, Brand T, Binladen J, Gilbert TMP, Shapiro B, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300:791–795PubMedCrossRefGoogle Scholar
  67. Willerslev E, Hansen AJ, Brand TB, Rønn R, Barnes I, Wiuf C, Gilichinsky DA, Mitchell D, Cooper A (2004a) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10CrossRefGoogle Scholar
  68. Willerslev E, Hansen AJ, Poinar HN (2004b) Isolation of nucleic acids and cultures from ice and permafrost. TREE 19:141–147Google Scholar
  69. Wolpoff MH (1989) Multiregional evolution: the fossil alternative to Eden. In: Stringer C, Mellars P (eds) The human revolution. Edinburgh University Press, EdinburghGoogle Scholar
  70. Wolpoff MH, Wu X, Thorne AG (1984) Modern Homo sapiens origins: a general theory of human evolution involving the fossil evidence from East Asia. In: Smith FH, Spencer F (eds) The origins of modern humans: a world survey of the fossil evidence. Alan R. Liss, New York, pp 411–483Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Martin B. Hebsgaard
    • 1
  • Carsten Wiuf
    • 2
    • 3
  • M. Thomas P. Gilbert
    • 1
  • Henrik Glenner
    • 1
  • Eske Willerslev
    • 1
  1. 1.Centré for Ancient GeneticsNiels Bohr Institute and Biological Institute, University of CopenhagenCopenhagenDenmark
  2. 2.Bioinformatics Research CenterUniversity of AarhusAarhusDenmark
  3. 3.Molecular Diagnostic LaboratoryAarhus University HospitalAarhusDenmark

Personalised recommendations