Hand Bionic Score: a clinical follow-up study of severe hand injuries and development of a recommendation score to supply bionic prosthesis

Abstract

Background

Severe hand injuries significantly limit function and esthetics of the affected hand due to massive trauma in skeletal and soft tissues. Surgical reconstruction is often unsatisfactory, so bionic prostheses are a consideration. However, assessment of functional outcomes and quality of life after surgical reconstruction to guide clinical decisions immediately after injury and in the course of treatment remain difficult.

Methods

We conducted a prospective follow-up analysis of patients with severe hand injuries during 2016–2018. We retrospectively evaluated initial trauma severity and examined current functional status, quality of life, general function, and satisfaction in everyday situations of the hand. We also developed a novel Hand Bionic Score to guide clinical recommendation for selective amputation and bionic prosthesis supply.

Results

We examined 30 patients with a mean age of 53.8 years and mean initial severity of hand injury (iHISS) of 138.4. Measures indicated moderate quality of life limitations, moderate to severe limitation of overall hand function, and slight to moderate limitation of actual hand strength and function. Mean time to follow-up examination was 3.67 years. Using the measured outcomes, we developed a Hand Bionic Score that showed good ability to differentiate patients based on outcome markers. Appropriate cutoff scores for all measured outcome markers were used to determine Hand Bionic Score classifications to guide clinical recommendation for elective amputation and bionic prosthetic supply: < 10 points, bionic hand supply not recommended; 10–14, bionic supply should be considered; or > 14, bionic supply is recommended.

Conclusions

While iHISS can guide early clinical decisions following severe hand injury, our novel Hand Bionic Score provides orientation for clinical decision-making regarding elective amputation and bionic prosthesis supply later during the course of treatment. The score not only considers hand function but also psychological outcomes and quality of life, which are important considerations for patients with severe hand injuries. However, future randomized multicenter studies are needed to validate Hand Bionic Score before further clinical application.

Level of evidence: Level III, risk/prognostic study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Oleske DM, Hahn JJ (1992) Work-related injuries of the hand: data from an occupational injury/illness surveillance system. J Community Health 17(4):205–219

    CAS  PubMed  Google Scholar 

  2. 2.

    Sorock GS, Lombardi DA, Hauser RB, Eisen EA, Herrick RF, Mittleman MA (2002) Acute traumatic occupational hand injuries: type, location, and severity. J Occup Environ Med 44(4):345–351

    PubMed  Google Scholar 

  3. 3.

    Hussmann J, Kucan JO, Russell RC, Bradley T, Zamboni WA (1995) Electrical injuries—morbidity, outcome and treatment rationale. Burns 21(7):530–535

    CAS  PubMed  Google Scholar 

  4. 4.

    Zhang G, Ju J, Jin G, Tang L, Fu Y, Hou R (2016) Replantation or revascularization for the treatment of hand degloving injuries. J Plast Reconstr Aesthet Surg 69(12):1669–1675

    PubMed  Google Scholar 

  5. 5.

    von Schroeder HP, Botte MJ (1998) Crush syndrome of the upper extremity. Hand Clin 14(3):451–456

    Google Scholar 

  6. 6.

    Neumeister M, Hegge T, Amalfi A, Sauerbier M (2010) The reconstruction of the mutilated hand. Semin Plast Surg 24(1):77–102

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chim H, Maricevich MA, Carlsen BT, Moran SL, Salgado CJ, Wei FC, Mardini S (2013) Challenges in replantation of complex amputations. Semin Plast Surg 27(4):182–189

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pet MA, Ko JH (2019) Indications for replantation and revascularization in the hand. Hand Clin 35(2):119–130

    PubMed  Google Scholar 

  9. 9.

    Kamarul T, Mansor A, Robson N, Albusaidi SH, Suhaeb AM, Samsudin EZ (2018) Replantation and revascularization of amputated upper limb appendages outcome and predicting the factors influencing the success rates of these procedures in a tertiary hospital: an 8-year retrospective, cross-sectional study. J Orthop Surg (Hong Kong) 26(1) 2309499017749983

  10. 10.

    Sherman R (2002) To reconstruct or not to reconstruct? N Engl J Med 347(24):1906–1907

    PubMed  Google Scholar 

  11. 11.

    Gilbert SE (1996) Implications of severe trauma to the hand. Prof Nurse 11(6):368–370

    CAS  PubMed  Google Scholar 

  12. 12.

    Klapheke M (1999) Transplantation of the human hand: psychiatric considerations. Bull Menn Clin 63:159–173

    Google Scholar 

  13. 13.

    Pulvertaft RG (1975) Psychological aspects of hand unjuries. Hand 7(2):93–103

    CAS  PubMed  Google Scholar 

  14. 14.

    Meyer B, Asbrock F (2018) Disabled or cyborg? How bionics affect stereotypes toward people with physical disabilities. Front Psychol 9:2251

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Alawi SA, Werner D, Könneker S, Vogt PM, Jokuszies A (2018) Quality of life and reconstructive surgery efforts in severe hand injuries. Innov Surg Sci 3(2):147–156

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Brown PW (1996) Body and soul. J Hand Ther 9(3):201–202

    CAS  PubMed  Google Scholar 

  17. 17.

    Dogu B, Kuran B, Sirzai H, Sag S, Akkaya N, Sahin F (2014) The relationship between hand function, depression, and the psychological impact of trauma in patients with traumatic hand injury. Int J Rehabil Res 37(2):105–109

    PubMed  Google Scholar 

  18. 18.

    Ramel E, Rosberg HE, Dahlin LB, Cederlund RI (2013) Return to work after a serious hand injury. Work 44(4):459–469

    PubMed  Google Scholar 

  19. 19.

    Hu J, Jiang Y, Liang Y, Yu IT, Leng H, He Y (2014) Predictors of return to work and duration of absence following work-related hand injury. Int J Inj Control Saf Promot 21(3):216–223

    CAS  Google Scholar 

  20. 20.

    Shi Q, Sinden K, MacDermid JC, Walton D, Grewal R (2014) A systematic review of prognostic factors for return to work following work-related traumatic hand injury. J Hand Ther 27(1):55–62

    PubMed  Google Scholar 

  21. 21.

    Gustafsson M, Ahlström G (2004) Problems experienced during the first year of an acute traumatic hand injury – a prospective study. J Clin Nurs 13(8):986–995

    PubMed  Google Scholar 

  22. 22.

    Grunert BK, Smith CJ, Devine CA, Fehring BA, Matloub HS, Sanger JR et al (1988) Early psychological aspects of severe hand injury. J Hand Surg Br 13(2):177–180

    CAS  PubMed  Google Scholar 

  23. 23.

    Alawi SA, Ipaktchi R, Mett TR, Kuhbier JW, Neubert N, Strauss S (2019) Survey on the state of knowledge of upper limb bionic prosthetic options in German hospitals – a multicenter and multi-discipline inquiry. GMS Ger Plast Reconstr Aesthet Surg 9 Doc01 (20190227)

  24. 24.

    Werner D, Alawi SA (2019) Four extremity amputation and bionic prosthesis supply after disseminated intravascular coagulation: a follow-up on functionality and quality of life after bionic prosthesis supply. World J Plast Surg 8(2):146–162

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Semasinghe CL, Madusanka DGK, Ranaweera RKPS, Gopura RARC (2019) Transradial prostheses: trends in development of hardware and control systems. Int J Med Robot 15(1):e1960

    PubMed  Google Scholar 

  26. 26.

    Bergmeister KD, Hader M, Lewis S, Russold MF, Schiestl M, Manzano-Szalai K, Roche AD, Salminger S, Dietl H, Aszmann OC (2016) Prosthesis control with an implantable multichannel wireless electromyography system for high-level amputees: a large-animal study. Plast Reconstr Surg 137(1):153–162

    CAS  PubMed  Google Scholar 

  27. 27.

    Salminger S, Sturma A, Hofer C, Evangelista M, Perrin M, Bergmeister KD et al (2019) Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci Robot 4(32):eaaw6306

    Google Scholar 

  28. 28.

    Salminger S, Sturma A, Roche AD, Mayer JA, Gstoettner C, Aszmann OC (2019) Outcomes, challenges and pitfalls after targeted muscle reinnervation in high level amputees. Is it worth the effort? Plast Reconstr Surg

  29. 29.

    Bumbaširević M, Lešić A, Palibrk T, Georgescu AV, Matei IR, Vučetić Č et al (2019) What microsurgeon, orthopaedic and plastic surgeon should know about bionic hand. Injury S0020–1383(19):30667–30669

    Google Scholar 

  30. 30.

    Geethanjali P (2016) Myoelectric control of prosthetic hands: state-of-the-art review. Med Devices (Auckl) 9:247–255

    Google Scholar 

  31. 31.

    Amsuess S, Vujaklija I, Goebel P, Roche AD, Graimann B, Aszmann OC, Farina D (2016) Context-dependent upper limb prosthesis control for natural and robust use. IEEE Trans Neural Syst Rehabil Eng 24(7):744–753

    PubMed  Google Scholar 

  32. 32.

    Deutsche Gesetzliche Unfallversicherung - Messblatt für obere Gliedmaßen (nach der Neutral - 0 - Methode). www.dguv.de/medien/formtexte/aerzte/f_4222/f4222.doc Last accesed Aug 01, 2019

  33. 33.

    Brazier JE, Harper R, Jones NM, O'Cathain A, Thomas KJ, Usherwood T, Westlake L (1992) Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305(6846):160–164

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, Bonsel G, Badia X (2011) Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 20(10):1727–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hudak PL, Amadio PC, Bombardier C (1996) Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder, and head) [corrected]. Am J Ind Med 29(6):602–608

    CAS  PubMed  Google Scholar 

  36. 36.

    Chung KC, Pillsbury MS, Walters MR, Hayward RA (1998) Reliability and validity testing of the Michigan hand outcomes questionnaire. J Hand Surg Am 23(4):575–587

    CAS  PubMed  Google Scholar 

  37. 37.

    Campbell DA, Kay SPJ (1996) The hand injury severity scoring system. J Hand Surg Br 21(3):295–298

    CAS  PubMed  Google Scholar 

  38. 38.

    Saxena P, Cutler L, Feldberg L (2004) Assessment of the severity of hand injuries using ‘hand injury severity score’, and its correlation with the functional outcome. Injury 35(5):511–516

    CAS  PubMed  Google Scholar 

  39. 39.

    Matsuzaki H, Narisawa H, Miwa H, Toishi S (2009) Predicting functional recovery and return to work after mutilating hand injuries: usefulness of Campbell’s hand injury severity score. J Hand Surg Am 34(5):880–885

    PubMed  Google Scholar 

  40. 40.

    Lin DCY, Chang JH, Shieh SJ, Tsai FH, Lee YL (2012) Prediction of hand strength by hand injury severity scoring system in hand injured patients. Disabil Rehabil 34(5):423–428

    PubMed  Google Scholar 

  41. 41.

    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    CAS  PubMed  Google Scholar 

  42. 42.

    Medling BD, Bueno RA Jr, Russell RC, Neumeister MW (2007) Replantation outcomes. Clin Plast Surg 34(2):177–185 vii-viii

    PubMed  Google Scholar 

  43. 43.

    Aszmann OC, Vujaklija I, Roche AD, Salminger S, Herceg M, Sturma A, Hruby LA, Pittermann A, Hofer C, Amsuess S, Farina D (2016) Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Sci Rep 6:34960

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cone J, Hueston JT (1974) Psychological aspects of hand injury. Med J Aust 1(4):104–108

    CAS  PubMed  Google Scholar 

  45. 45.

    Grunert BK, Devine CA, Matloub HS, Sanger JR, Yousif NJ (1988) Flashbacks after traumatic hand injuries: prognostic indicators. J Hand Surg Am 13(1):125–127

    CAS  PubMed  Google Scholar 

  46. 46.

    Grunert BK, Matloub HS, Sanger JR, Yousif NJ, Hettermann S (1991) Effects of litigation on maintenance of psychological symptoms after severe hand injury. J Hand Surg Am 16(6):1031–1034

    CAS  PubMed  Google Scholar 

  47. 47.

    Grunert BK, Devine CA, Matloub HS, Sanger JR, Yousif NJ, Anderson RC, Roell SM (1992) Psychological adjustment following work-related hand injury: 18-month follow-up. Ann Plast Surg 29(6):537–542

    CAS  PubMed  Google Scholar 

  48. 48.

    Himmelstein JS, Feuerstein M, Stanek EJ 3rd, Koyamatsu K, Pransky GS, Morgan W et al (1995) Work-related upper-extremity disorders and work disability: clinical and psychosocial presentation. J Occup Environ Med 37(11):1278–1286

    CAS  PubMed  Google Scholar 

  49. 49.

    Kovacs L, Grob M, Zimmermann A, Eder M, Herschbach P, Henrich G, Zimmer R, Biemer E, Papadopulos NA (2011) Quality of life after severe hand injury. J Plast Reconstr Aesthet Surg 64(11):1495–1502

    CAS  PubMed  Google Scholar 

  50. 50.

    Weddington WW Jr, Segraves KB, Simon MA (1985) Psychological outcome of extremity sarcoma survivors undergoing amputation or limb salvage. J Clin Oncol 3(10):1393–1399

    PubMed  Google Scholar 

  51. 51.

    Mayer A, Kudar K, Bretz K, Tihanyi J (2008) Body schema and body awareness of amputees. Prosthetics Orthot Int 32(3):363–382

    CAS  Google Scholar 

  52. 52.

    Merad M, de Montalivet É, Touillet A, Martinet N, Roby-Brami A, Jarrassé N (2018) Can we achieve intuitive prosthetic elbow control based on healthy upper limb motor strategies? Front Neurorobot 12:1

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Adewuyi AA, Hargrove LJ, Kuiken TA (2017) Resolving the effect of wrist position on myoelectric pattern recognition control. J Neuroeng Rehabil 14(1):39

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Benatti S, Milosevic B, Farella E, Gruppioni E, Benini L (2017) A prosthetic hand body area controller based on efficient pattern recognition control strategies. Sensors (Basel):17(4)

  55. 55.

    Srinivasan SS, Diaz M, Carty M, Herr HM (2019) Towards functional restoration for persons with limb amputation: a dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci Rep 9(1):1981

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval JF et al (2018) Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med:10(443)

  57. 57.

    Clites TR, Herr HM, Srinivasan SS, Zorzos AN, Carty MJ (2018) The Ewing amputation: the first human implementation of the agonist-antagonist myoneural interface. Plast Reconstr Surg Glob Open 6(11):e1997

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Frost CM, Ursu DC, Flattery SM, Nedic A, Hassett CA, Moon JD, Buchanan PJ, Brent Gillespie R, Kung TA, Kemp SWP, Cederna PS, Urbanchek MG (2018) Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand. J Neuroeng Rehabil 15(1):108

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nielsen JL, Holmgaard S, Jiang N, Englehart K, Farina D, Parker P (2009) Enhanced EMG signal processing for simultaneous and proportional myoelectric control. Conf Proc IEEE Eng Med Biol Soc 2009:4335–4338

    PubMed  Google Scholar 

  60. 60.

    Aman M, Festin C, Sporer ME, Gstoettner C, Prahm C, Bergmeister KD, Aszmann OC (2019) Bionic reconstruction: restoration of extremity function with osseointegrated and mind-controlled prostheses. Wien Klin Wochenschr

  61. 61.

    Hruby LA, Sturma A, Mayer JA, Pittermann A, Salminger S, Aszmann OC (2017) Algorithm for bionic hand reconstruction in patients with global brachial plexopathies. J Neurosurg 127(5):1163–1171

    PubMed  Google Scholar 

  62. 62.

    Hargrove LJ, Miller LA, Turner K, Kuiken TA (2017) Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: a randomized clinical trial. Sci Rep 7(1):13840

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Aman M, Sporer ME, Gstoettner C, Prahm C, Hofer C, Mayr W, Farina D, Aszmann OC (2019) Bionic hand as artificial organ: current status and future perspectives. Artif Organs 43(2):109–118

    PubMed  Google Scholar 

  64. 64.

    Okorokova EV, He Q, Bensmaia SJ (2018) Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J Neural Eng 15(6):066033

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Aszmann OC, Roche AD, Salminger S, Paternostro-Sluga T, Herceg M, Sturma A, Hofer C, Farina D (2015) Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 385(9983):2183–2189

    PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Affiliations

Authors

Contributions

All authors (Dennis Werner, Seyed Arash Alawi) have read and approved the final manuscript.

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Seyed Arash Alawi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria. educational grants, participation in speakers’ bureaus. membership, employment, consultancies, stock ownership or other equity interest, and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

Approval for this study was granted by the Hannover Medical School (MHH) University Ethics Committee (#7352). Research was conducted in accordance with the 1964 Helsinki Declaration.

Informed consent

All patients provided written consent for participation in the study as well as publication of data and images.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werner, D., Alawi, S.A. Hand Bionic Score: a clinical follow-up study of severe hand injuries and development of a recommendation score to supply bionic prosthesis. Eur J Plast Surg (2020). https://doi.org/10.1007/s00238-020-01679-z

Download citation

Keywords

  • Complex hand trauma
  • Amputation
  • Reconstructive surgery
  • Quality of life
  • Functional outcome
  • Bionic score
  • Bionic prostheses