Callosal angle in idiopathic normal pressure hydrocephalus: small angular mal-rotations of the coronal plane affect measurement reliability

Abstract

Purpose

The callosal angle (CA) is a useful biomarker in the diagnosis and management of idiopathic normal pressure hydrocephalus (NPH). Used incorrectly, CA measurements are variable, affecting its reliability as a clinical tool. Our objectives are to evaluate (i) reproducibility of established CA measurements between trained raters and (ii) impact of minor angular mal-rotations of the true coronal plane on CA measurements.

Methods

CAs were measured by two independent raters on three-dimensional isovolumetric T1-weighted brain MRI of NPH patients and healthy controls using the established true coronal plane reformatted orthogonal to the plane containing the anterior-posterior commissural (AC-PC) line at the level of the posterior commissure. CA changes were subsequently evaluated when the coronal plane was mal-rotated by ± 5° and ± 10° in anterior-posterior and clockwise-anticlockwise directions. Inter-rater reliability of CA measurements was assessed using the intraclass correlation coefficient (ICC).

Results

On the true coronal plane, inter-rater ICC was excellent (0.973) for NPH patients and good (0.875) for controls. On mal-rotated coronal plane setups, ICC for CA was worse in controls (0.484–0.886) than NPH (0.879–0.981) groups and in clockwise-anticlockwise (0.484–0.956) than anterior-posterior (0.503–0.981) mal-rotations. CA changes secondary to mal-rotations from the true coronal plane were significant in NPH patients (P < 0.0001 to 0.0378) but not in controls (P > 0.1).

Conclusion

This is the first demonstration of how small angular mal-rotations of the coronal plane used for CA measurement affect its value and inter-rater reliability, highlighting the importance of a standardized protocol when measuring the CA in NPH workup.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure. N Engl J Med. 273(3):117–126. https://doi.org/10.1056/NEJM196507152730301

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, Nakajima M, Hashimoto M, Kuriyama N, Tokuda T, Ishii K, Kaijima M, Hirata Y, Saito M, Arai H (2012) Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo). 52(11):775–778. https://doi.org/10.2176/nmc.52.775

    Article  PubMed  Google Scholar 

  3. 3.

    Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S4-16; discussion ii-v.

  4. 4.

    Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2(8):506–511. https://doi.org/10.1016/S1474-4422(03)00487-3

    Article  PubMed  Google Scholar 

  5. 5.

    Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Söderström L, Virhammar J, Laurell K (2018) The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol 25(3):569–576. https://doi.org/10.1111/ene.13555

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Virhammar J, Laurell K, Cesarini KG, Larsson EM (2014) The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. Clinical article. J Neurosurg 120(1):178–184. https://doi.org/10.3171/2013.8.JNS13575

    Article  PubMed  Google Scholar 

  7. 7.

    Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, Kuroyama T, Kuramoto Y, Matsumoto M, Ueno Y (2017) Utility of MRI based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: clinical research. J Neurosurg 127:1436–1442

    Article  Google Scholar 

  8. 8.

    Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H (2008) Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 48 Suppl:S1-23

  9. 9.

    Keong NC, Pena A, Price SJ, Czosnyka M, Czosnyka Z, Pickard JD (2016) Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus. 41(3):E11. https://doi.org/10.3171/2016.7.FOCUS16194

    Article  PubMed  Google Scholar 

  10. 10.

    Kockum K, Virhammar J, Riklund K, Söderström L, Larsson EM, Laurell K (2019) Standardized image evaluation in patients with idiopathic normal pressure hydrocephalus: consistency and reproducibility. Neuroradiology 61(12):1397-1406. doi: https://doi.org/10.1007/s00234-019-02273-2.

  11. 11.

    Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, Ohkawa S, Uemura T, Yoshikawa T, Mori E (2008) Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 18(11):2678–2683. https://doi.org/10.1007/s00330-008-1044-4

    Article  PubMed  Google Scholar 

  12. 12.

    Cagnin A, Simioni M, Tagliapietra M, Citton V, Pompanin S, Della Puppa A, Ermani M, Manara R (2015) A simplified callosal angle measure best differentiates idiopathic-normal pressure hydrocephalus from neurodegenerative dementia. J Alzheimer’s Dis 46(4):1033–1038. https://doi.org/10.3233/JAD-150107

    Article  Google Scholar 

  13. 13.

    Miskin N, Patel H, Franceschi AM, Ades-Aron B, Le A, Damadian BE, Stanton C, Serulle Y, Golomb J, Gonen O, Rusinek H, George AE (2017) Diagnosis of normal-pressure hydrocephalus: Use of traditional measures in the era of volumetric MR imaging. Radiology 285(1):197–205. https://doi.org/10.1148/radiol.2017161216

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Virhammar J, Laurell K, Cesarini KG, Larsson EM (2018) Increase in callosal angle and decrease in ventricular volume after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Neurosurg 130:130–135

    Article  Google Scholar 

  15. 15.

    Grahnke K, Jusue-Torres I, Szujewski C, Joyce C, Schneck M, Prabhu VC, Anderson DE (2018) The quest for predicting sustained shunt response in normal-pressure hydrocephalus: an analysis of the callosal angle’s utility. World Neurosurg 115:717–722

    Article  Google Scholar 

  16. 16.

    Yamada S, Ishikawa M, Yamaguchi M, Yamamoto K (2019) Longitudinal morphological changes during recovery from brain deformation due to idiopathic normal pressure hydrocephalus after ventriculoperitoneal shunt surgery. Sci Rep 9:17318. https://doi.org/10.1038/s41598-019-53888-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ohara M, Hattori T, Yokota T (2020) Progressive supranuclear palsy often develops idiopathic normal pressure hydrocephalus-like magnetic resonance imaging features. Eur Neurol J 27(10):1930–1936. https://doi.org/10.1111/ene.14322 Epub 2020 Jun 29

    CAS  Article  Google Scholar 

  18. 18.

    Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N, International NPH Consultant Group (2005) International NPHCG. Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta neurochirurgica Supplement 95:237–240. https://doi.org/10.1007/3-211-32318-x_48

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lock C, Kwok J, Kumar S, Ahmad-Annuar A, Narayanan V, Ng ASL, Tan YJ, Kandiah N, Tan EK, Czosnyka Z, Czosnyka M, Pickard JD, Keong NC (2019) DTI profiles for rapid description of cohorts at the clinical-research interface. Front Med (Lausanne) 10(5):357. https://doi.org/10.3389/fmed.2018.00357 eCollection 2018

    Article  Google Scholar 

  20. 20.

    Bao J, Gao Y, Cao Y, Xu S, Zheng Y, Wang Y, Jiang J, Wang Y, Zhou Y, Zhong C (2016) Feasibility of simple linear measurements to determine ventricular enlargement in patients with idiopathic normal pressure hydrocephalus. J CraniofacSurg 27(5):e462–e465. https://doi.org/10.1097/SCS.0000000000002779

    Article  Google Scholar 

  21. 21.

    Reinard K, Basheer A, Phillips S, Snyder A, Agarwal A, Jafari-Khouzani K, Soltanian-Zadeh H, Schultz L, Aho T, Schwalb JM (2015) Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 9(6):59. https://doi.org/10.4103/2152-7806.154777 eCollection

    Article  Google Scholar 

  22. 22.

    Mantovani P, Albini-Riccioli L, Giannini G, Milletti D, Sorenson TJ, Stanzani-Maserati M, Oppi F, Elder BD, Cevoli S, Cortelli P, Palandri G, BOLOGNA PRO-HYDRO Study Group (2020) Anterior callosal angle: a new marker of idiopathic normal pressure hydrocephalus? World Neurosurg 139:e548–e552. https://doi.org/10.1016/j.wneu.2020.04.085

    Article  PubMed  Google Scholar 

  23. 23.

    Chan LL, Chen RC, Li HH, Lee AJY, Go WY, Lee W, Lock C, Kumar S, Ng ASL, Kandiah N, Tan LCS, Tan EK, Keong NCH. The splenial angle: a novel radiological index for idiopathic normal pressure hydrocephalus. (European Radiology manuscript under revision).

Download references

Acknowledgements

We are grateful to the Radiography fraternity in the Singapore General Hospital for their strong support in this collaborative work.

Funding

National Medical Research Council, Singapore (NMRC/TA/0024/2013; NMRC/CSI/0006/2006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling Ling Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the studies approved by the SingHealth Centralized Institutional Review Board (2016/2627 and 2015/2587).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Lee, A., Li, H. et al. Callosal angle in idiopathic normal pressure hydrocephalus: small angular mal-rotations of the coronal plane affect measurement reliability. Neuroradiology (2021). https://doi.org/10.1007/s00234-021-02658-2

Download citation

Keywords

  • Normal-pressure hydrocephalus
  • Callosal angle
  • Test-retest reliability
  • Diagnosis