Perfusion-weighted techniques in MRI grading of pediatric cerebral tumors: efficiency of dynamic susceptibility contrast and arterial spin labeling

Abstract

Purpose

Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion MRI are applied in pediatric brain tumor grading, but their value for clinical daily practice remains unclear. We explored the ability of ASL and DSC to distinguish low- and high-grade lesions, in an unselected cohort of pediatric cerebral tumors.

Methods

We retrospectively compared standard perfusion outcomes including blood volume, blood flow, and time parameters from DSC and ASL at 1.5T or 3T MRI scanners of 46 treatment-naive patients by drawing ROI via consensus by two neuroradiologists on the solid portions of every tumor. The discriminant abilities of perfusion parameters were evaluated by receiver operating characteristic (ROC) over the entire cohort and depending on the tumor location and the magnetic field.

Results

ASL and DSC parameters showed overall low to moderate performances to distinguish low- and high-grade tumors (area under the curve: between 0.548 and 0.697). Discriminant abilities were better for tumors located supratentorially (AUC between 0.777 and 0.810) than infratentorially, where none of the metrics reached significance. We observed a better differentiation between low- and high-grade cancers at 3T than at 1.5-T. For infratentorial tumors, time parameters from DSC performed better than the commonly used metrics (AUC ≥ 0.8).

Conclusion

DSC and ASL show moderate abilities to distinguish low- and high-grade brain tumors in an unselected cohort. Absolute value of K2, TMAX, tMIP, and normalized value of TMAX of the DSC appear as an alternative to conventional parameters for infratentorial tumors. Three Tesla evaluation should be favored over 1.5-Tesla.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data are available under conditions

References

  1. 1.

    Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Borja MJ, Plaza MJ, Altman N, Saigal G (2013) Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. Am J Roentgenol 200:W483–W503. https://doi.org/10.2214/AJR.12.9724

    Article  Google Scholar 

  3. 3.

    Porto L, Jurcoane A, Schwabe D, Hattingen E (2014) Conventional magnetic resonance imaging in the differentiation between high and low-grade brain tumours in paediatric patients. Eur J Paediatr Neurol 18:25–29. https://doi.org/10.1016/j.ejpn.2013.07.004

    Article  PubMed  Google Scholar 

  4. 4.

    Poretti A, Meoded A, Huisman TAGM (2012) Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 35:32–47. https://doi.org/10.1002/jmri.22722

    Article  PubMed  Google Scholar 

  5. 5.

    Sui Y, Wang H, Liu G, Damen FW, Wanamaker C, Li Y, Zhou XJ (2015) Differentiation of low- and high-grade pediatric brain tumors with high b -value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 277:489–496. https://doi.org/10.1148/radiol.2015142156

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Porto L, Jurcoane A, Schwabe D, Kieslich M, Hattingen E (2013) Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. Eur J Paediatr Neurol 17:302–307. https://doi.org/10.1016/j.ejpn.2012.12.002

    Article  PubMed  Google Scholar 

  7. 7.

    Vicente J, Fuster-Garcia E, Tortajada S, García-Gómez JM, Davies N, Natarajan K, Wilson M, Grundy RG, Wesseling P, Monleón D, Celda B, Robles M, Peet AC (2013) Accurate classification of childhood brain tumours by in vivo 1H MRS – a multi-centre study. Eur J Cancer 49:658–667. https://doi.org/10.1016/j.ejca.2012.09.003

    Article  PubMed  Google Scholar 

  8. 8.

    Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA, For the MRS Consensus Group (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679. https://doi.org/10.1148/radiol.13130531

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Koob M, Girard N, Ghattas B, Fellah S, Confort-Gouny S, Figarella-Branger D, Scavarda D (2016) The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types. J Neurooncol 127:345–353. https://doi.org/10.1007/s11060-015-2042-4

    Article  PubMed  Google Scholar 

  10. 10.

    Tzika A, Astrakas L, Zarifi M, Petridou N, Young-Poussaint T, Goumnerova L, Zurakowski D, Anthony D, Black P (2003) Multiparametric MR assessment of pediatric brain tumors. Neuroradiology 45:1–10. https://doi.org/10.1007/s00234-002-0865-0

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Poussaint TY, Rodriguez D (2006) Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 16:169–192. https://doi.org/10.1016/j.nic.2005.11.005

    Article  PubMed  Google Scholar 

  12. 12.

    Calmon R, Puget S, Varlet P, Dangouloff-Ros V, Blauwblomme T, Beccaria K, Grevent D, Sainte-Rose C, Castel D, Debily MA, Dufour C, Bolle S, Dhermain F, Saitovitch A, Zilbovicius M, Brunelle F, Grill J, Boddaert N (2018) Cerebral blood flow changes after radiation therapy identifies pseudoprogression in diffuse intrinsic pontine gliomas. Neuro-Oncol 20:994–1002. https://doi.org/10.1093/neuonc/nox227

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ball WS, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9(207–230):ix

    Google Scholar 

  14. 14.

    Ho CY, Cardinal JS, Kamer AP, Kralik SF (2015) Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology 57:299–306. https://doi.org/10.1007/s00234-014-1478-0

    Article  PubMed  Google Scholar 

  15. 15.

    Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF (2016) Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. Am J Neuroradiol 37:544–551. https://doi.org/10.3174/ajnr.A4559

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Cha S (2006) Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in pediatric patients. Neuroimaging Clin N Am 16:137–147. https://doi.org/10.1016/j.nic.2005.11.006

    Article  PubMed  Google Scholar 

  17. 17.

    Dallery F, Bouzerar R, Michel D, Attencourt C, Promelle V, Peltier J, Constans JM, Balédent O, Gondry-Jouet C (2017) Perfusion magnetic resonance imaging in pediatric brain tumors. Neuroradiology 59:1143–1153. https://doi.org/10.1007/s00234-017-1917-9

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M (2015) A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57:1181–1202. https://doi.org/10.1007/s00234-015-1571-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia: recommended implementation of ASL for clinical applications. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  Google Scholar 

  20. 20.

    Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, Edwards MS (2014) Arterial spin-labeled perfusion of pediatric brain tumors. Am J Neuroradiol 35:395–401. https://doi.org/10.3174/ajnr.A3670

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Morana G, Piccardo A, Tortora D, Puntoni M, Severino M, Nozza P, Ravegnani M, Consales A, Mascelli S, Raso A, Cabria M, Verrico A, Milanaccio C, Rossi A (2017) Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F–DOPA PET. Eur J Nucl Med Mol Imaging 44:2084–2093. https://doi.org/10.1007/s00259-017-3777-2

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kikuchi K, Hiwatashi A, Togao O, Yamashita K, Yoshimoto K, Mizoguchi M, Suzuki SO, Iwaki T, Suzuki Y, Honda H (2017) Correlation between arterial spin-labeling perfusion and histopathological vascular density of pediatric intracranial tumors. J Neurooncol 135:561–569. https://doi.org/10.1007/s11060-017-2604-8

    Article  PubMed  Google Scholar 

  23. 23.

    Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, Calmon R, Pagès M, Grill J, Dufour C, Blauwblomme T, Puget S, Zerah M, Sainte-Rose C, Brunelle F, Varlet P, Boddaert N (2016) Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 281:553–566. https://doi.org/10.1148/radiol.2016152228

    Article  PubMed  Google Scholar 

  24. 24.

    Morana G, Tortora D, Staglianò S, Nozza P, Mascelli S, Severino M, Piatelli G, Consales A, Lequin M, Garrè ML, Rossi A (2018) Pediatric astrocytic tumor grading: comparison between arterial spin labeling and dynamic susceptibility contrast MRI perfusion. Neuroradiology 60:437–446. https://doi.org/10.1007/s00234-018-1992-6

    Article  PubMed  Google Scholar 

  25. 25.

    Novak J, Withey SB, Lateef S, MacPherson L, Pinkey B, Peet AC (2019) A comparison of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast MRI with and without contrast agent leakage correction in paediatric brain tumours. Br J Radiol 92:20170872. https://doi.org/10.1259/bjr.20170872

    Article  PubMed  Google Scholar 

  26. 26.

    Vidyasagar R, Abernethy L, Pizer B, Avula S, Parkes LM (2016) Quantitative measurement of blood flow in paediatric brain tumours—a comparative study of dynamic susceptibility contrast and multi time-point arterial spin labelled MRI. Br J Radiol 89:20150624. https://doi.org/10.1259/bjr.20150624

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    European Society of Radiology (ESR) (2020) ESR statement on the validation of imaging biomarkers. Insights Imaging 11:76. https://doi.org/10.1186/s13244-020-00872-9

    Article  Google Scholar 

  28. 28.

    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  29. 29.

    Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    CAS  PubMed  Google Scholar 

  30. 30.

    Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M, for the American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee (2015) ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. Am J Neuroradiol 36:E41–E51. https://doi.org/10.3174/ajnr.A4341

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Tanaka Y, Nagaoka T, Nair G, Ohno K, Duong TQ (2011) Arterial spin labeling and dynamic susceptibility contrast CBF MRI in postischemic hyperperfusion, hypercapnia, and after mannitol injection. J Cereb Blood Flow Metab 31:1403–1411. https://doi.org/10.1038/jcbfm.2010.228

    Article  PubMed  Google Scholar 

  32. 32.

    Hales PW, d’Arco F, Cooper J et al (2019) Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. NeuroImage Clin 22:101696. https://doi.org/10.1016/j.nicl.2019.101696

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372. https://doi.org/10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol (Berl) 124:763–775. https://doi.org/10.1007/s00401-012-1066-5

    Article  Google Scholar 

  35. 35.

    Straka M, Albers GW, Bammer R (2010) Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 32:1024–1037. https://doi.org/10.1002/jmri.22338

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Law M, Young R, Babb J, Pollack E, Johnson G (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 28:761–766

    CAS  PubMed  Google Scholar 

  37. 37.

    Delgado AF, De Luca F, Hanagandi P et al (2018) Arterial spin-labeling in children with brain tumor: a meta-analysis. Am J Neuroradiol 39(8):1536–1542. https://doi.org/10.3174/ajnr.A5727

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Gevers S, van Osch MJ, Bokkers RP et al (2011) Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab 31:1706–1715. https://doi.org/10.1038/jcbfm.2011.10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kaisti KK, Långsjö JW, Aalto S, et al. (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans: Anesthesiology 99:603–613. https://doi.org/10.1097/00000542-200309000-00015

  40. 40.

    Bauchet L, Rigau V, Mathieu-Daudé H, Fabbro-Peray P, Palenzuela G, Figarella-Branger D, Moritz J, Puget S, Bauchet F, Pallusseau L, Duffau H, Coubes P, Trétarre B, Labrousse F, Dhellemmes P, Société Française de Neurochirurgie Pédiatrique, Société Française de Neurochirurgie, Société Française de Neuropathologie, Association des Neuro-Oncologues d’Expression Française (2009) Clinical epidemiology for childhood primary central nervous system tumors. J Neurooncol 92:87–98. https://doi.org/10.1007/s11060-008-9740-0

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Benoit Testud: conception and design of the study, acquired and analyzed the data, drafted the manuscript and the figures. Gilles Brun: conception and design of the study, drafted the manuscript and the figures. Arthur Varoquaux: conception and design of the study, analyzed the data. Jean-François Hak: conception and design of the study. Romain Appay: conception and design of the study. Arnaud Le Troter: analyzed the data. Nadine Girard: conception and design of the study, acquired the data, drafted the manuscript and the figures. Jan-Patrick Stellmann: conception and design of the study, analyzed the data, drafted the manuscript and the figures.

Corresponding author

Correspondence to B. Testud.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Testud, B., Brun, G., Varoquaux, A. et al. Perfusion-weighted techniques in MRI grading of pediatric cerebral tumors: efficiency of dynamic susceptibility contrast and arterial spin labeling. Neuroradiology (2021). https://doi.org/10.1007/s00234-021-02640-y

Download citation

Keywords

  • Perfusion-weighted imaging
  • DSC
  • ASL
  • Pediatric brain tumor
  • Grading