Combined signal averaging and compressed sensing: impact on quality of contrast-enhanced fat-suppressed 3D turbo field-echo imaging for pharyngolaryngeal squamous cell carcinoma

Abstract

Purpose

To determine whether combined signal averaging and compressed sensing (CS averaging) improves the image quality of contrast-enhanced fat-suppressed T1-weighted three-dimensional turbo field-echo (FS T1W 3D-TFE) for evaluation of pharyngolaryngeal squamous cell carcinoma (PLSCC).

Methods

This retrospective study included 27 patients with PLSCC. In all patients, contrast-enhanced FS T1W 3D-TFE imaging with CS averaging (number of excitations, 7) and that without CS averaging (number of excitations, 1) were obtained during the same acquisition time. Overall image quality, mucosal enhancement, vessel clarity, motion artifact, lesion conspicuity, and lesion edge sharpness were qualitatively evaluated using a 5-point scale. Images with and without CS averaging were compared using the Wilcoxon signed-rank test. Signal-to-noise ratio (SNR) of the lesion and the muscle structure were compared between the two imaging methods using a paired t-test.

Results

Compared with the images without CS averaging, those with CS averaging showed significantly better overall image quality (p = 0.002), mucosal enhancement (p = 0.009), vessel clarity (p = 0.003), muscle edge clarity (p = 0.002), lesion conspicuity (p = 0.002), and lesion edge sharpness (p = 0.001); and less motion artifact (p < 0.001). The SNRs of the lesion and of the muscle structure were significantly higher for images with CS averaging than those without CS averaging (p < 0.001).

Conclusion

CS averaging improves the image quality of contrast-enhanced FS T1W 3D-TFE MR images for evaluation of PLSCC without requiring additional acquisition time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Meindl T, Wirth S, Weckbach S, Dietrich O, Reiser M, Schoenberg SO (2009) Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences. Eur Radiol 19(3):713–721. https://doi.org/10.1007/s00330-008-1175-7

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Kataoka M, Ueda H, Koyama T, Umeoka S, Togashi K, Asato R, Tanaka S, Ito J (2005) Contrast-enhanced volumetric interpolated breath-hold examination compared with spin-echo T1-weighted imaging of head and neck tumors. AJR Am J Roentgenol 184(1):313–319. https://doi.org/10.2214/ajr.184.1.01840313

    Article  PubMed  Google Scholar 

  3. 3.

    Tanitame N, Tanitame K, Awai K (2017) Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging. Jpn J Radiol 35(4):135–144. https://doi.org/10.1007/s11604-017-0621-3

    Article  PubMed  Google Scholar 

  4. 4.

    Koyfman SA, Ismaila N, Crook D, D'Cruz A, Rodriguez CP, Sher DJ, Silbermins D, Sturgis EM, Tsue TT, Weiss J, Yom SS, Holsinger FC (2019) Management of the Neck in squamous cell carcinoma of the Oral cavity and oropharynx: ASCO clinical practice guideline. J Clin Oncol 37(20):1753–1774. https://doi.org/10.1200/jco.18.01921

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hiyama T, Sekiya K, Kuno H, Oda S, Kusumoto M, Minami M, Kobayashi T (2019) Imaging of extracranial head and neck lesions in cancer patients: a symptom-based approach. Jpn J Radiol 37(5):354–370. https://doi.org/10.1007/s11604-019-00832-4

    Article  PubMed  Google Scholar 

  6. 6.

    Hiyama T, Kuno H, Nagaki T, Sekiya K, Oda S, Fujii S, Hayashi R, Kobayashi T (2020) Extra-nodal extension in head and neck cancer: how radiologists can help staging and treatment planning. Jpn J Radiol 38:489–506. https://doi.org/10.1007/s11604-020-00929-1

    Article  PubMed  Google Scholar 

  7. 7.

    Becker M, Zbaren P, Laeng H, Stoupis C, Porcellini B, Vock P (1995) Neoplastic invasion of the laryngeal cartilage: comparison of MR imaging and CT with histopathologic correlation. Radiology 194(3):661–669. https://doi.org/10.1148/radiology.194.3.7862960

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Castelijns JA, Hermans R, van den Brekel MW, Mukherji SK (1998) Imaging of laryngeal cancer. Semin Ultrasound CT MR 19(6):492–504. https://doi.org/10.1016/s0887-2171(98)90051-8

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Boussel L, Herigault G, de la Vega A, Nonent M, Douek PC, Serfaty JM (2006) Swallowing, arterial pulsation, and breathing induce motion artifacts in carotid artery MRI. J Magn Reson Imaging 23(3):413–415. https://doi.org/10.1002/jmri.20525

    Article  PubMed  Google Scholar 

  10. 10.

    Wood ML, Runge VM, Henkelman RM (1988) Overcoming motion in abdominal MR imaging. AJR Am J Roentgenol 150(3):513–522. https://doi.org/10.2214/ajr.150.3.513

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wood ML, Henkelman RM (1986) Suppression of respiratory motion artifacts in magnetic resonance imaging. Med Phys 13(6):794–805. https://doi.org/10.1118/1.595851

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Citra Latifa AT (2017) The influence of number of signal average variation to the scan time and anatomic information of lumbar MRI on sagittal slice with stir sequence. J Med Sci Clin Res 05(06):23146–23152. https://doi.org/10.18535/jmscr/v5i6.57

    Article  Google Scholar 

  13. 13.

    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195. https://doi.org/10.1002/mrm.21391

    Article  PubMed  Google Scholar 

  14. 14.

    Sagawa H, Kataoka M, Kanao S, Onishi N, Nickel MD, Toi M, Togashi K (2019) Impact of the number of iterations in compressed sensing reconstruction on ultrafast dynamic contrast-enhanced breast MR imaging. Magnetic Resonance Med Sci 18(3):200–207. https://doi.org/10.2463/mrms.mp.2018-0015

    Article  Google Scholar 

  15. 15.

    Lee SH, Lee YH, Suh JS (2018) Accelerating knee MR imaging: compressed sensing in isotropic three-dimensional fast spin-echo sequence. Magn Reson Imaging 46:90–97. https://doi.org/10.1016/j.mri.2017.10.018

    Article  PubMed  Google Scholar 

  16. 16.

    Lee SH, Lee YH, Song HT, Suh JS (2017) Rapid acquisition of magnetic resonance imaging of the shoulder using three-dimensional fast spin echo sequence with compressed sensing. Magn Reson Imaging 42:152–157. https://doi.org/10.1016/j.mri.2017.07.022

    Article  PubMed  Google Scholar 

  17. 17.

    Kijowski R, Rosas H, Samsonov A, King K, Peters R, Liu F (2017) Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing. J Magn Reson Imaging 45(6):1712–1722. https://doi.org/10.1002/jmri.25507

    Article  PubMed  Google Scholar 

  18. 18.

    Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM (2017) Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Skelet Radiol 46(1):7–15. https://doi.org/10.1007/s00256-016-2490-8

    Article  Google Scholar 

  19. 19.

    Okuchi S, Fushimi Y, Okada T, Yamamoto A, Okada T, Kikuchi T, Yoshida K, Miyamoto S, Togashi K (2019) Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE. Eur Radiol 29(8):4114–4122. https://doi.org/10.1007/s00330-018-5862-8

    Article  PubMed  Google Scholar 

  20. 20.

    Kawai N, Goshima S, Noda Y, Kajita K, Kawada H, Tanahashi Y, Nagata S, Matsuo M (2018) Gadoxetic acid-enhanced dynamic magnetic resonance imaging using optimized integrated combination of compressed sensing and parallel imaging technique. Magn Reson Imaging 57:111–117. https://doi.org/10.1016/j.mri.2018.11.004

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Nam JG, Lee JM, Lee SM, Kang HJ, Lee ES, Hur BY, Yoon JH, Kim E, Doneva M (2019) High acceleration three-dimensional T1-weighted dual Echo Dixon Hepatobiliary phase imaging using compressed sensing-sensitivity encoding: comparison of image quality and solid lesion detectability with the standard T1-weighted sequence. Korean J Radiol 20(3):438–448. https://doi.org/10.3348/kjr.2018.0310

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62(6):1574–1584. https://doi.org/10.1002/mrm.22161

    Article  PubMed  Google Scholar 

  23. 23.

    Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70(4):213–220. https://doi.org/10.1037/h0026256

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428. https://doi.org/10.1037//0033-2909.86.2.420

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Darçot E, Yerly J, Hilbert T, Colotti R, Pellegrin M, Najdenovska E, Kober T, Stuber M, van Heeswijk RB (2017) Compressed sensing with signal averaging reduces motion artifact in Fluorine-19 MRI. Int Soc Magn Res Med Proc 25:3072

    Google Scholar 

  26. 26.

    Jaspan ON, Fleysher R, Lipton ML (2015) Compressed sensing MRI: a review of the clinical literature. Br J Radiol 88(1056):20150487. https://doi.org/10.1259/bjr.20150487

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Touska P, Connor SEJ (2019) Recent advances in MRI of the head and neck, skull base and cranial nerves: new and evolving sequences, analyses and clinical applications. Br J Radiol 92(1104):20190513. https://doi.org/10.1259/bjr.20190513

    Article  PubMed  Google Scholar 

  28. 28.

    Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256(2):607–616. https://doi.org/10.1148/radiol.10091218

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Runge VM, Richter JK, Heverhagen JT (2017) Speed in clinical magnetic resonance. Investig Radiol 52(1):1–17. https://doi.org/10.1097/rli.0000000000000330

    Article  Google Scholar 

  30. 30.

    Sartoretti T, Reischauer C, Sartoretti E, Binkert C, Najafi A, Sartoretti-Schefer S (2018) Common artefacts encountered on images acquired with combined compressed sensing and SENSE. Insights Imaging 9(6):1107–1115. https://doi.org/10.1007/s13244-018-0668-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N (2016) Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Investig Radiol 51(6):349–364. https://doi.org/10.1097/rli.0000000000000274

    CAS  Article  Google Scholar 

  32. 32.

    Sharma SD, Fong CL, Tzung BS, Law M, Nayak KS (2013) Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Investig Radiol 48(9):638–645. https://doi.org/10.1097/RLI.0b013e31828a012d

    Article  Google Scholar 

  33. 33.

    Vranic JE, Cross NM, Wang Y, Hippe DS, de Weerdt E, Mossa-Basha M (2018) Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. AJNR Am J Neuroradiol 40:92–98. https://doi.org/10.3174/ajnr.A5905

    Article  PubMed  Google Scholar 

  34. 34.

    Cho SJ, Choi YJ, Chung SR, Lee JH, Baek JH (2019) High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique. Clin Radiol 74(10):817.e819–817.e814. https://doi.org/10.1016/j.crad.2019.06.023

    Article  Google Scholar 

  35. 35.

    Morita K, Nakaura T, Maruyama N, Iyama Y, Oda S, Utsunomiya D, Namimoto T, Kitajima M, Yoneyama M, Yamashita Y (2020) Hybrid of compressed sensing and parallel imaging applied to three-dimensional isotropic T2-weighted Turbo spin-echo MR imaging of the lumbar spine. Magnetic Resonance Med Sci 19(1):48–55. https://doi.org/10.2463/mrms.mp.2018-0132

    Article  Google Scholar 

  36. 36.

    Sartoretti E, Sartoretti T, Binkert C, Najafi A, Schwenk A, Hinnen M, van Smoorenburg L, Eichenberger B, Sartoretti-Schefer S (2019) Reduction of procedure times in routine clinical practice with compressed SENSE magnetic resonance imaging technique. PLoS One 14(4):e0214887. https://doi.org/10.1371/journal.pone.0214887

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Geerts-Ossevoort L dE, Duijndam A, van Ijperen G, Peeters H, Doneva M, Nijenhuis M, Huang A. (2018) Compressed SENSE. Speed done right. Every time. Philips® healthcare, Netherlands

  38. 38.

    Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, van Smoorenburg L, Eichenberger B, Najafi A, Binkert C, Becker AS, Sartoretti-Schefer S (2019) Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging. Eur J Radiol 120:108667

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Koji Takumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Institutional ethics review board approval was obtained, and informed consent was waived for this retrospective study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takumi, K., Nagano, H., Nakanosono, R. et al. Combined signal averaging and compressed sensing: impact on quality of contrast-enhanced fat-suppressed 3D turbo field-echo imaging for pharyngolaryngeal squamous cell carcinoma. Neuroradiology (2020). https://doi.org/10.1007/s00234-020-02480-2

Download citation

Keywords

  • Compressed sensing
  • Averaging
  • Head and neck
  • Magnetic resonance imaging