Intrathecal use of gadobutrol for gadolinium-enhanced MR cisternography in the evaluation of patients with otorhinorrhea



Intrathecal gadolinium-enhanced MR cisternography (IGE-MRC) has a high sensitivity to detect accurate localization of cerebrospinal fluid (CSF) leakage in otorhinorrhea patients. Our purpose in this study was to describe our experience in analyzing clinically suspected CSF leakage by IGE-MRC by using gadobutrol with emphasis on its safety and diagnostic performance.


We retrospectively reviewed our imaging and clinical database for the evaluation of patients admitted to our clinic with complaints of otorhinorrhea between 2017 and 2019. Two radiologists evaluated the imaging studies independently. Consensus data was used in the analysis. Medical record review and phone call were used for the follow-up.


Of the 85 patients included in the retrospective analysis, 82 (96.5%) had rhinorrhea and 3 (3.5%) had otorrhea. Overall, 29 patients (34.1% of all patients) underwent operation for repair of the CSF leakage site. Beta-transferrin test was available and positive in 33 patients (38.8%). Five (5.9%) patients complained headaches after the procedure and complaints were resolved with increased water intake. Postprocedurally, 3 patients (3.5%) had vertigo and 1 patient (1.2%) complained nausea but spontaneous regression were observed in a few hours. None of the patients experienced a significant complication or adverse reaction during follow-up period. Sixty-seven patients (78.8%) had medical record and telephone follow-up. Mean follow-up duration with call was 14.2 months.


IGE-MRC is a minimally invasive and highly sensitive imaging technique. The current results during our follow-up demonstrate the relative safety and feasibility of IGE-MRC by using gadobutrol to evaluate CSF leakage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Nacar Dogan S, Kizilkilic O, Kocak B, Isler C, Islak C, Kocer N (2018) Intrathecal gadolinium-enhanced MR cisternography in patients with otorhinorrhea: 10-year experience of a tertiary referral center. Neuroradiology 60:471–477.

    Article  PubMed  Google Scholar 

  2. 2.

    Yi HJ, Zhao L-D, Guo W, Wu N, Li JN, Ren LL, Liu PN, Yang SM (2013) The diagnosis and surgical treatment of occult otogenic CSF leakage. Acta Otolaryngol 133:130–135.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Manelfe C, Cellerier P, Sobel D, Prevost C, Bonafe A (1982) Cerebrospinal fluid rhinorrhea: evaluation with metrizamide cisternography. Am J Roentgenol 138:471–476.

    CAS  Article  Google Scholar 

  4. 4.

    Sanus GZ, Ozlen F, Biceroglu H, Isler C, Tanriverdi T, Bas A, Albayram MS, Kaynar MY (2008) An experimental model of traumatic nasoethmoidal cerebrospinal fluid fistula. J Craniofac Surg 19:441–445.

    Article  PubMed  Google Scholar 

  5. 5.

    Isler C, Ahmedov ML, Akgun MY et al (2018) Endoscopic endonasal cerebrospinal fluid leak repair on the ventral midline skull base: a single neurosurgical center experience. Turk Neurosurg 28:193–203.

    Article  PubMed  Google Scholar 

  6. 6.

    Algin O, Turkbey B (2013) Intrathecal gadolinium-enhanced MR cisternography: a comprehensive review. AJNR Am J Neuroradiol 34:14–22.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Selcuk H, Albayram S, Ozer H, Ulus S, Sanus GZ, Kaynar MY, Kocer N, Islak C (2010) Intrathecal gadolinium-enhanced MR cisternography in the evaluation of CSF leakage. Am J Neuroradiol 31:71–75.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Albayram S, Kilic F, Ozer H, Baghaki S, Kocer N, Islak C (2008) Gadolinium-enhanced MR cisternography to evaluate dural leaks in intracranial hypotension syndrome. AJNR Am J Neuroradiol 29:116–121.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yoo H-M, Kim SJ, Choi CG, et al Detection of CSF leak in spinal CSF leak syndrome using MR myelography: correlation with radioisotope cisternography. doi:

  10. 10.

    Algin O, Hakyemez B, Gokalp G, Ozcan T, Korfali E, Parlak M (2010) The contribution of 3D-CISS and contrast-enhanced MR cisternography in detecting cerebrospinal fluid leak in patients with rhinorrhoea. Br J Radiol 83:225–232.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Algin O, Hakyemez B, Parlak M (2010) Phase-contrast MRI and 3D-CISS versus contrast-enhanced MR cisternography on the evaluation of the aqueductal stenosis. Neuroradiology 52:99–108.

    Article  PubMed  Google Scholar 

  12. 12.

    Algin O, Hakyemez B, Parlak M (2011) Phase-contrast MRI and 3D-CISS versus contrast-enhanced MR cisternography for the detection of spontaneous third ventriculostomy. J Neuroradiol 38:98–104.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Aydin K, Terzibasioglu E, Sencer S, Sencer A, Suoglu Y, Karasu A, Kiris T, Turantan MI (2008) Localization of cerebrospinal fluid leaks by gadolinium-enhanced magnetic resonance cisternography: a 5-year single-center experience. Neurosurgery 62:584–589; discussion 584-9.

    Article  PubMed  Google Scholar 

  14. 14.

    Tali ET, Ercan N, Kaymaz M, Pasaoglu A, Jinkins JR (2004) Intrathecal gadolinium (gadopentetate dimeglumine)-enhanced MR cisternography used to determine potential communication between the cerebrospinal fluid pathways and intracranial arachnoid cysts. Neuroradiology 46:744–754.

    Article  PubMed  Google Scholar 

  15. 15.

    Reiche W, Komenda Y, Schick B, Grunwald I, Steudel WI, Reith W (2002) MR cisternography after intrathecal Gd-DTPA application. Eur Radiol 12:2943–2949.

    Article  PubMed  Google Scholar 

  16. 16.

    Ecin G, Oner AY, Tokgoz N, Ucar M, Aykol S, Tali T (2013) T2-weighted vs. intrathecal contrast-enhanced MR cisternography in the evaluation of CSF rhinorrhea. Acta Radiol 54:698–701.

    Article  PubMed  Google Scholar 

  17. 17.

    Aydin K, Guven K, Sencer S, Jinkins JR, Minareci O (2004) MRI cisternography with gadolinium-containing contrast medium: its role, advantages and limitations in the investigation of rhinorrhoea. Neuroradiology 46:75–80.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Arbeláez A, Medina E, Rodríguez M, Londoño AC, Castillo M (2007) Intrathecal administration of gadopentetate dimeglumine for MR cisternography of nasoethmoidal CSF fistula. AJR Am J Roentgenol 188:W560–W564.

    Article  PubMed  Google Scholar 

  19. 19.

    Tali ET, Ercan N, Krumina G et al (2002) Intrathecal gadolinium (Gadopentetate Dimeglumine) enhanced magnetic resonance myelography and cisternography: results of a multicenter study. Investig Radiol 37:152–159

    Article  Google Scholar 

  20. 20.

    Jinkins JR, Rudwan M, Krumina G, Tali ET (2002) Intrathecal gadolinium-enhanced MR cisternography in the evaluation of clinically suspected cerebrospinal fluid rhinorrhea in humans: early experience. Radiology 222:555–559.

    Article  PubMed  Google Scholar 

  21. 21.

    Zeng Q, Xiong L, Jinkins JR, Fan Z, Liu Z (1999) Intrathecal gadolinium-enhanced MR myelography and cisternography: a pilot study in human patients. Am J Roentgenol 173:1109–1115.

    CAS  Article  Google Scholar 

  22. 22.

    Siebner HR, Gräfin von Einsiedel H, Conrad B (1997) Magnetic resonance ventriculography with gadolinium DTPA: report of two cases. Neuroradiology 39:418–422; discussion 422.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wenzel R, Leppien A (2000) Gadolinium-myelocisternography for cerebrospinal fluid rhinorrhoea. Neuroradiology 42:874–880.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Edeklev CS, Halvorsen M, Løvland G, Vatnehol SAS, Gjertsen Ø, Nedregaard B, Sletteberg R, Ringstad G, Eide PK (2019) Intrathecal use of gadobutrol for glymphatic MR imaging: Prospective Safety Study of 100 Patients. AJNR Am J Neuroradiol 40:1257–1264.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Di Chiro G, Knop RH, Girton ME et al (1985) MR cisternography and myelography with Gd-DTPA in monkeys. Radiology 157:373–377.

    Article  PubMed  Google Scholar 

  26. 26.

    Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES (1998) Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 19:1455–1462

    CAS  PubMed  Google Scholar 

  27. 27.

    Ray DE, Cavanagh JB, Nolan CC, Williams SC (1996) Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol 17:365–373

    CAS  PubMed  Google Scholar 

  28. 28.

    Arlt S, Cepek L, Rustenbeck HH, Prange H, Reimers CD (2007) Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine [4]. J Neurol 254:810–812

    Article  Google Scholar 

  29. 29.

    Li L, Gao FQ, Zhang B, Luo BN, Yang ZY, Zhao J (2008) Overdosage of intrathecal gadolinium and neurological response. Clin Radiol 63:1063–1068.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kapoor R, Liu J, Devasenapathy A, Gordin V (2010) Gadolinium encephalopathy after intrathecal gadolinium injection. Pain Physician 13

  31. 31.

    Park K-W, Im S-B, Kim B-T, Hwang SC, Park JS, Shin WH (2010) Neurotoxic manifestations of an overdose intrathecal injection of gadopentetate dimeglumine. J Korean Med Sci 25:505–508.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Nayak NB, Huang JC, Hathout GM, Shaba W, el-Saden SM (2013) Complex imaging features of accidental cerebral intraventricular gadolinium administration. J Neurosurg 118:1130–1134.

    Article  PubMed  Google Scholar 

  33. 33.

    Reeves C, Galang E, Padalia R, Tran N, Padalia D (2017) Intrathecal injection of gadobutrol: a tale of caution. J Pain Palliat Care Pharmacother 31:139–143.

    Article  PubMed  Google Scholar 

  34. 34.

    Provenzano DA, Pellis Z, Deriggi L (2019) Fatal gadolinium-induced encephalopathy following accidental intrathecal administration: a case report and a comprehensive evidence-based review. Reg Anesth Pain Med 44:721–729

    Article  Google Scholar 

  35. 35.

    Popescu A, Patel J, McCormick ZL et al (2018) Fact finders for patient safety: are gadolinium-based contrast media safe alternatives to iodinated contrast agents for the safe performance of spinal injection procedures? Pain Med 19:2089–2090

    PubMed  Google Scholar 

  36. 36.

    Eide PK, Ringstad G (2015) MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol Open 4:2058460115609635.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782.

    Article  PubMed  Google Scholar 

  38. 38.

    Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J’, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51:447–453.

    CAS  Article  Google Scholar 

  40. 40.

    Berger F, Kubik-Huch RA, Niemann T, Schmid HR, Poetzsch M, Froehlich JM, Beer JH, Thali MJ, Kraemer T (2018) Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans. Radiology 288:703–709.

    Article  PubMed  Google Scholar 

  41. 41.

    Nehra AK, McDonald RJ, Bluhm AM et al (2018) Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study. Radiology 288:416–423.

    Article  PubMed  Google Scholar 

  42. 42.

    McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


No funding was received for this study.

Author information




Osman Kizilkilic conceived of the presented idea. Osman Kizilkilic and Sebahat Nacar Dogan developed the theory and evaluated all DWI on PACS system independently. Both Bora Korkmazer and Serdar Arslan the analytical methods. Vefa Salt reviewed the medical records. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Osman Kizilkilic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dogan, S., Salt, V., Korkmazer, B. et al. Intrathecal use of gadobutrol for gadolinium-enhanced MR cisternography in the evaluation of patients with otorhinorrhea. Neuroradiology (2020).

Download citation


  • Cisternography
  • Gadobutrol
  • Intrathecal
  • Otorhinorrhea
  • Magnetic resonance imaging