Skip to main content

Advertisement

Log in

Abnormal changes in functional connectivity between the amygdala and frontal regions are associated with depression in Alzheimer’s disease

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to investigate the functional connectivity (FC) of Alzheimer’s disease patients with depression (D-AD) based on an amygdalar seed using resting-state functional magnetic resonance imaging (rs-fMRI).

Methods

Twenty-one non-depressed AD (nD-AD) patients and 21 D-AD patients underwent rs-fMRI. The Hamilton Depression Rating Scale and Neuropsychiatric Inventory were used to evaluate the severity of depression. The amygdala was used as the seed for FC analysis. The FC differences between the two groups were evaluated by two-sample t tests, and the correlation of FC changes with depressive severity was analyzed by Pearson correlational analysis.

Results

Compared with the nD-AD patients, D-AD patients had increased FC values between the amygdala and orbitofrontal cortex and decreased FC values among the amygdala, medial prefrontal cortex, and inferior frontal gyrus.

Conclusion

These data suggest that abnormal amygdala-prefrontal FC may be an important characteristic of AD patients with depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boublay N, Schott AM, Krolak-Salmon P (2016) Neuroimaging correlates of neuropsychiatric symptoms in Alzheimer’s disease: a review of 20 years of research. Eur J Neurol 23:1500–1509. https://doi.org/10.1111/ene.13076

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg PB, Nowrangi MA, Lyketsos CG (2015) Neuropsychiatric symptoms in Alzheimer’s disease: what might be associated brain circuits? Mol Asp Med 43-44:25–37. https://doi.org/10.1016/j.mam.2015.05.005

    Article  Google Scholar 

  3. Lozupone M, La Montagna M, D'Urso F et al (2018) Pharmacotherapy for the treatment of depression in patients with Alzheimer’s disease: a treatment-resistant depressive disorder. Expert Opin Pharmacother 19:823–842. https://doi.org/10.1080/14656566.2018.1471136

    Article  CAS  PubMed  Google Scholar 

  4. Orgeta V, Tabet N, Nilforooshan R, Howard R (2017) Efficacy of antidepressants for depression in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 58:725–733. https://doi.org/10.3233/jad-161247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brommelhoff JA, Sultzer DL (2015) Brain structure and function related to depression in Alzheimer’s disease: contributions from neuroimaging research. J Alzheimers Dis 45:689–703. https://doi.org/10.3233/jad-148007

    Article  PubMed  Google Scholar 

  6. Son JH, Han DH, Min KJ, Kee BS (2013) Correlation between gray matter volume in the temporal lobe and depressive symptoms in patients with Alzheimer’s disease. Neurosci Lett 548:15–20. https://doi.org/10.1016/j.neulet.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  7. Honda H, Terada S, Sato S, Oshima E, Ikeda C, Nagao S, Yokota O, Uchitomi Y (2014) Subjective depressive mood and regional cerebral blood flow in mild Alzheimer’s disease. Int Psychogeriatr 26:817–823. https://doi.org/10.1017/s1041610213002573

    Article  PubMed  Google Scholar 

  8. Tsai CF, Hung CW, Lirng JF, Wang SJ, Fuh JL (2013) Differences in brain metabolism associated with agitation and depression in Alzheimer’s disease. East Asian Arch Psychiatry 23:86–90

    CAS  PubMed  Google Scholar 

  9. Di Paola M, Phillips O, Orfei MD et al (2015) Corpus callosum structure is topographically correlated with the early course of cognition and depression in Alzheimer’s disease. J Alzheimers Dis 45:1097–1108. https://doi.org/10.3233/jad-142895

    Article  PubMed  Google Scholar 

  10. Guo Z, Liu X, Jia X, Hou H, Cao Y, Wei F, Li J, Chen X, Zhang Y, Shen Y, Wei L, Xu L, Chen W (2015) Regional coherence changes in Alzheimer’s disease patients with depressive symptoms: a resting-state functional MRI study. J Alzheimers Dis 48:603–611. https://doi.org/10.3233/jad-150460

    Article  PubMed  Google Scholar 

  11. Liang P, Xiang J, Liang H, Qi Z, Li K, Initiative A’s DNI (2014) Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 11(4):389–398

    Article  CAS  Google Scholar 

  12. Guo Z, Zhang J, Liu X, Hou H, Cao Y, Wei F, Li J, Chen X, Shen Y, Chen W (2015) Neurometabolic characteristics in the anterior cingulate gyrus of Alzheimer’s disease patients with depression: a (1)H magnetic resonance spectroscopy study. BMC Psychiatry 15(306):306. https://doi.org/10.1186/s12888-015-0691-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Z, Liu X, Hou H, Wei F, Liu J, Chen X (2016) Abnormal degree centrality in Alzheimer’s disease patients with depression: a resting-state functional magnetic resonance imaging study. Exp Gerontol 79:61–66. https://doi.org/10.1016/j.exger.2016.03.017

    Article  PubMed  Google Scholar 

  14. Song Y, Lu H, Hu S, Xu M, Li X, Liu J (2014) Regulating emotion to improve physical health through the amygdala. Soc Cogn Affect Neurosci 10:523–530. https://doi.org/10.1093/scan/nsu083

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng W, Rolls ET, Qiu J, Liu W, Tang Y, Huang CC, Wang XF, Zhang J, Lin W, Zheng L, Pu JC, Tsai SJ, Yang AC, Lin CP, Wang F, Xie P, Feng J (2016) Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain 139:3296–3309. https://doi.org/10.1093/brain/aww255

    Article  PubMed  Google Scholar 

  16. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59:1037–1050. https://doi.org/10.1016/j.neuron.2008.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ray RD, Zald DH (2012) Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neurosci Biobehav Rev 36:479–501. https://doi.org/10.1016/j.neubiorev.2011.08.005

    Article  PubMed  Google Scholar 

  18. Heller AS (2016) Cortical-subcortical interactions in depression: from animal models to human psychopathology. Front Syst Neurosci 10(20). https://doi.org/10.3389/fnsys.2016.00020

  19. Ochsner KN, Ray RR, Hughes B, McRae K, Cooper JC, Weber J, Gabrieli JDE, Gross JJ (2009) Bottom-up and top-down processes in emotion generation. Psychol Sci 20:1322–1331. https://doi.org/10.1111/j.1467-9280.2009.02459.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35:121–143. https://doi.org/10.1017/s0140525x11000446

    Article  PubMed  PubMed Central  Google Scholar 

  21. Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JRC, Deckersbach T, Trivedi MH (2015) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172:124–138. https://doi.org/10.1176/appi.ajp.2014.14010076

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carballedo A, Scheuerecker J, Meisenzahl E, Schoepf V, Bokde A, Möller HJ, Doyle M, Wiesmann M, Frodl T (2011) Functional connectivity of emotional processing in depression. J Affect Disord 134:272–279. https://doi.org/10.1016/j.jad.2011.06.021

    Article  PubMed  Google Scholar 

  23. Tozzi L, Doolin K, Farrel C, Joseph S, O’Keane V, Frodl T (2017) Functional magnetic resonance imaging correlates of emotion recognition and voluntary attentional regulation in depression: a generalized psycho-physiological interaction study. J Affect Disord 208:535–544. https://doi.org/10.1016/j.jad.2016.10.029

    Article  PubMed  Google Scholar 

  24. Connolly CG, Ho TC, Blom EH, LeWinn KZ, Sacchet MD, Tymofiyeva O, Simmons AN, Yang TT (2017) Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J Affect Disord 207:86–94. https://doi.org/10.1016/j.jad.2016.09.026

    Article  PubMed  Google Scholar 

  25. De Witte NAJ, Mueller SC (2017) White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset. Brain Imaging Behav 11:1604–1615. https://doi.org/10.1007/s11682-016-9642-2

    Article  Google Scholar 

  26. Dekens DW, Naudé PJW, Engelborghs S, Vermeiren Y, van Dam D, Oude Voshaar RC, Eisel ULM, de Deyn PP (2016) Neutrophil gelatinase-associated lipocalin and its receptors in Alzheimer’s disease (AD) brain regions: differential findings in AD with and without depression. J Alzheimers Dis 55:763–776. https://doi.org/10.3233/jad-160330

    Article  PubMed Central  Google Scholar 

  27. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schneider LS, Tariot PN, Lyketsos CG, Dagerman KS, Davis KL, Davis S, Hsiao JK, Jeste DV, Katz IR, Olin JT, Pollock BG, Rabins PV, Rosenheck RA, Small GW, Lebowitz B, Lieberman JA (2001) National institute of mental health clinical antipsychotic trials of intervention effectiveness (CATIE): Alzheimer disease trial methodology. Am J Geriatr Psychiatry 9:346–360. https://doi.org/10.1097/00019442-200111000-00004

    Article  CAS  PubMed  Google Scholar 

  29. Olin JT, Schneider LS, Katz IR et al (2002) Provisional diagnostic criteria for depression of Alzheimer’s disease: description and review. Expert Rev Neurother 3:99–106. https://doi.org/10.1586/14737175.3.1.99

    Article  Google Scholar 

  30. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19:1233–1239. https://doi.org/10.1016/s1053-8119(03)00169-1

    Article  PubMed  Google Scholar 

  31. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136:1692–1707. https://doi.org/10.1093/brain/awt094

    Article  Google Scholar 

  32. Murray EA, Izquierdo A (2007) Orbitofrontal cortex and amygdala contributions to affect and action in primates. Ann N Y Acad Sci 1121:273–296. https://doi.org/10.1196/annals.1401.021

    Article  PubMed  Google Scholar 

  33. Rule RR, Shimamura AP, Knight RT (2002) Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci 2:264–270. https://doi.org/10.3758/cabn.2.3.264

    Article  Google Scholar 

  34. Johnstone T, Van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27:8877–8884. https://doi.org/10.1523/jneurosci.2063-07.2007

    Article  CAS  PubMed  Google Scholar 

  35. Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23:11054–11064. https://doi.org/10.1523/jneurosci.23-35-11054.2003

    Article  CAS  PubMed  Google Scholar 

  36. Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16:723–727. https://doi.org/10.1016/j.conb.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  37. Versace A, Thompson WK, Zhou D, Almeida JRC, Hassel S, Klein CR, Kupfer DJ, Phillips ML (2010) Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to emotional faces: state versus trait vulnerability markers of depression in bipolar disorder. Biol Psychiatry 67:422–431. https://doi.org/10.1016/j.biopsych.2009.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  38. Almeida JR, Versace A, Mechelli A et al (2009) Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 66:451–459. https://doi.org/10.1016/j.biopsych.2009.03.024

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Zhu X, Wang X, Zhu X, Zhong M, Yi J, Rao H, Yao S (2014) First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network. PLoS One 9:e85241. https://doi.org/10.1371/journal.pone.0085241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arruda-Carvalho M, Wu W-C, Cummings KA, Clem RL (2017) Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci 37:2976–2985. https://doi.org/10.1523/JNEUROSCI.3097-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernández-Lamo I, Sánchez-Campusano R, Gruart A, Delgado-García MJM (2016) Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue. Sci Rep 6(37650). https://doi.org/10.1038/srep37650

  42. López-Ramos JC, Guerra-Narbona R, Delgado-García JM (2015) Different forms of decision-making involve changes in the synaptic strength of the thalamic, hippocampal, and amygdalar afferents to the medial prefrontal cortex. Front Behav Neurosci 9(7). https://doi.org/10.3389/fnbeh.2015.00007

  43. Kang D, Liu Y, Miskovic V, Keil A, Ding M (2016) Large-scale functional brain connectivity during emotional engagement as revealed by beta-series correlation analysis. Psychophysiology 53:1627–1638. https://doi.org/10.1111/psyp.12731

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jin C, Gao C, Chen C et al (2010) A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett 503:105–109. https://doi.org/10.1016/j.neulet.2011.08.017

    Article  CAS  Google Scholar 

  45. Haim A, Albin-Brooks C, Sherer M, Mills E, Leuner B (2016) The effects of gestational stress and selective serotonin reuptake inhibitor antidepressant treatment on structural plasticity in the postpartum brain—a translational model for postpartum depression. Horm Behav 77:124–131. https://doi.org/10.1016/j.yhbeh.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  46. Abler B, Hofer C, Walter H, Erk S, Hoffmann H, Traue HC, Kessler H (2010) Habitual emotion regulation strategies and depressive symptoms in healthy subjects predict fMRI brain activation patterns related to major depression. Psychiatry Res 183:105–113. https://doi.org/10.1016/j.pscychresns.2010.05.010

    Article  PubMed  Google Scholar 

  47. Wang Z, Wang X, Liu J, Chen J, Liu X, Nie G, Jorgenson K, Sohn KC, Huang R, Liu M, Liu B, Kong J (2017) Acupuncture treatment modulates the corticostriatal reward circuitry in major depressive disorder. J Psychiatr Res 84:18–26. https://doi.org/10.1016/j.jpsychires.2016.09.014

    Article  PubMed  Google Scholar 

  48. Morawetz C, Bode S, Baudewig J, Heekeren HR (2017) Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation. Soc Cogn Affect Neurosci 12:569–585. https://doi.org/10.1093/scan/nsw169

    Article  PubMed  Google Scholar 

  49. Hu X, Song X, Yuan Y, Li E, Liu J, Liu W, Liu Y (2015) Abnormal functional connectivity of the amygdala is associated with depression in Parkinson’s disease. Mov Disord 30:238–244. https://doi.org/10.1002/mds.26087

    Article  PubMed  Google Scholar 

  50. Penfold C, Vizueta N, Townsend JD, Bookheimer SY, Altshuler LL (2015) Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition. Psychiatry Res 231:202–209. https://doi.org/10.1016/j.pscychresns.2014.11.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of Tongde Hospital of Zhejiang Province and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Liu, X., Xu, S. et al. Abnormal changes in functional connectivity between the amygdala and frontal regions are associated with depression in Alzheimer’s disease. Neuroradiology 60, 1315–1322 (2018). https://doi.org/10.1007/s00234-018-2100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-018-2100-7

Keywords

Navigation