, Volume 59, Issue 7, pp 677–684 | Cite as

Quantitative assessment on blood–brain barrier permeability of acute spontaneous intracerebral hemorrhage in basal ganglia: a CT perfusion study

  • Haoli Xu
  • Rui Li
  • Yuxia Duan
  • Jincheng Wang
  • Shuailiang Liu
  • Yue Zhang
  • Wenwen He
  • Xiaotao Qin
  • Guoquan Cao
  • Yunjun Yang
  • Qichuan Zhuge
  • Jun Yang
  • Weijian Chen
Functional Neuroradiology



Blood–brain barrier (BBB) damage aggravates perihematomal edema, and edema volume predicts prognosis independently. But the BBB permeability at the late stage of acute intracerebral hemorrhage (ICH) patients is uncertain. We aimed to assess the BBB permeability of spontaneous basal ganglia ICH using computed tomographic perfusion (CTP) and investigates its relationship with hematoma and perihematomal edema volume.


We performed CTP on 54 consecutive ICH patients within 24 to 72 h after symptom onset. Permeability-surface area product (PS) derived from CTP imaging was measured in hematoma, “high-PS spot,” perihematoma, normal-appearing, hemispheric, and contralateral regions. Hematoma and edema volumes were calculated from non-contrast CT.


“High-PS spot” and perihematoma regions had higher PS than the contralateral regions (p < 0.001). Hematoma PS was lower than that in the contralateral regions (p < 0.001). Perihematoma PS of the large-hematoma group was higher than that of the small-hematoma group (p = 0.011). Perihematomal edema volume correlated positively with hematoma volume (β = 0.864, p < 0.001) and perihematoma PS (β = 0.478, p < 0.001). Perihematoma PS correlated positively with hematoma volume (β = 0.373, p = 0.005).


Locally elevated perihematoma PS was found in most spontaneous basal ganglia ICH patients within 24 to 72 h after symptom onset. Perihematoma PS was higher in larger hematomas and was associated with larger edema volume. At this period, BBB leakage is likely to be an important factor in edema formation.


Cerebral hemorrhage Blood–brain barrier Capillary permeability Edema Perfusion imaging 



We thank the Zhenjiang Provincial Key Laboratory of Aging and Neurological Disorder Research (LH-001).

Compliance with ethical standards


This study was funded by the Zhenjiang Provincial Key Laboratory of Aging and Neurological Disorder Research (LH-001).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Adeoye O, Broderick JP (2010) Advances in the management of intracerebral hemorrhage. Nat Rev Neurol 6(11):593–601. doi: 10.1038/nrneurol.2010.146 CrossRefPubMedGoogle Scholar
  2. 2.
    Van Asch CJ, Luitse MJ, Rinkel GJ et al (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9(2):167–176. doi: 10.1016/s1474-4422(09)70340-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Grunwald Z, Beslow LA, Urday S et al (2016) Perihematomal edema expansion rates and patient outcomes in deep and lobar intracerebral hemorrhage. Neurocrit Care. doi: 10.1007/s12028-016-0321-3
  4. 4.
    Murthy SB, Moradiya Y, Dawson J et al (2015) Perihematomal edema and functional outcomes in intracerebral hemorrhage influence of hematoma volume and location. Stroke 46(11):3088–3092CrossRefPubMedGoogle Scholar
  5. 5.
    Urday S, Beslow LA, Dai F et al (2016) Rate of Perihematomal edema expansion predicts outcome after intracerebral hemorrhage. Crit Care Med 44(4):790–797. doi: 10.1097/CCM.0000000000001553 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang J, Arima H, Wu G et al (2015) Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke 46(4):1009–1013. doi: 10.1161/STROKEAHA.114.007154 CrossRefPubMedGoogle Scholar
  7. 7.
    Keep RF, Zhou N, Xiang J et al (2014) Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18. doi: 10.1186/2045-8118-11-18 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. doi: 10.1016/S1474-4422(12)70104-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Katsu M, Niizuma K, Yoshioka H et al (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 30(12):1939–1950. doi: 10.1038/jcbfm.2010.45 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moxon-Emre I, Schlichter LC (2011) Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 70(3):218–235. doi: 10.1097/NEN.0b013e31820d94a5 CrossRefPubMedGoogle Scholar
  11. 11.
    Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786. doi: 10.1161/STROKEAHA.110.596718 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mccourt R, Gould B, Kate M et al (2015) Blood-brain barrier compromise does not predict perihematoma edema growth in intracerebral hemorrhage. Stroke 46(4):954–960. doi: 10.1161/STROKEAHA.114.007544 CrossRefPubMedGoogle Scholar
  13. 13.
    Aksoy D, Bammer R, Mlynash M et al (2013) Magnetic resonance imaging profile of blood-brain barrier injury in patients with acute intracerebral hemorrhage. J Am Heart Assoc 2(3):e000161. doi: 10.1161/JAHA.113.000161 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Urday S, Kimberly WT, Beslow LA et al (2015) Targeting secondary injury in intracerebral haemorrhage—perihaematomal oedema. Nat Rev Neurol 11(2):111–122. doi: 10.1038/nrneurol.2014.264 CrossRefPubMedGoogle Scholar
  15. 15.
    Venkatasubramanian C, Mlynash M, Finley-Caulfield A et al (2011) Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 42(1):73–80. doi: 10.1161/STROKEAHA.110.590646 CrossRefPubMedGoogle Scholar
  16. 16.
    D’esterre CD, Chia TL, Jairath A et al (2011) Early rate of contrast extravasation in patients with intracerebral hemorrhage. AJNR Am J Neuroradiol 32(10):1879–1884. doi: 10.3174/ajnr.A2669 CrossRefPubMedGoogle Scholar
  17. 17.
    Fu J, Chen WJ, Wu GY et al (2015) Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage. Neuroradiology 57(2):179–187. doi: 10.1007/s00234-014-1456-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Li R, Duan YX, Zheng KK et al (2016) Dynamic volume computed tomography perfusion imaging in evaluation of secondary ischemia after acute cerebral hemorrhage. Int J Clin Exp Med 9(2):736–744Google Scholar
  19. 19.
    Mehdiratta M, Kumar S, Hackney D et al (2008) Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke 39(4):1165–1170. doi: 10.1161/STROKEAHA.107.501213 CrossRefPubMedGoogle Scholar
  20. 20.
    Li Q, Zhang G, Huang YJ et al (2015) Blend sign on computed tomography: novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke 46(8):2119–2123. doi: 10.1161/STROKEAHA.115.009185 CrossRefPubMedGoogle Scholar
  21. 21.
    Dankbaar JW, Hom J, Schneider T et al (2009) Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol 36(4):219–227. doi: 10.1016/j.neurad.2009.01.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Yang GY, Betz AL, Chenevert TL et al (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81(1):93–102. doi: 10.3171/jns.1994.81.1.0093 CrossRefPubMedGoogle Scholar
  23. 23.
    Wu G, Li C, Wang L et al (2011) Minimally invasive procedures for evacuation of intracerebral hemorrhage reduces perihematomal glutamate content, blood-brain barrier permeability and brain edema in rabbits. Neurocrit Care 14(1):118–126. doi: 10.1007/s12028-010-9473-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Ronaldson PT, Davis TP (2012) Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 18(25):3624–3644CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zazulia AR, Diringer MN, Videen TO et al (2001) Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab 21(7):804–810. doi: 10.1097/00004647-200107000-00005 CrossRefPubMedGoogle Scholar
  26. 26.
    Herweh C, Juttler E, Schellinger PD et al (2010) Perfusion CT in hyperacute cerebral hemorrhage within 3 hours after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging 20(4):350–353. doi: 10.1111/j.1552-6569.2009.00408.x CrossRefPubMedGoogle Scholar
  27. 27.
    Ducruet AF, Zacharia BE, Hickman ZL et al (2009) The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol 219(2):398–403. doi: 10.1016/j.expneurol.2009.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thrane AS, Rappold PM, Fujita T et al (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci U S A 108(2):846–851. doi: 10.1073/pnas.1015217108 CrossRefPubMedGoogle Scholar
  29. 29.
    Hosomi N, Naya T, Ohkita H et al (2009) Predictors of intracerebral hemorrhage severity and its outcome in Japanese stroke patients. Cerebrovasc Dis 27(1):67–74. doi: 10.1159/000172636 CrossRefPubMedGoogle Scholar
  30. 30.
    Lopresti MA, Bruce SS, Camacho E et al (2014) Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci 345(1–2):3–7. doi: 10.1016/j.jns.2014.06.057 CrossRefPubMedGoogle Scholar
  31. 31.
    Rodriguez-Luna D, Stewart T, Dowlatshahi D et al (2016) Perihematomal edema is greater in the presence of a spot sign but does not predict intracerebral hematoma expansion. Stroke 47(2):350–355. doi: 10.1161/STROKEAHA.115.011295 CrossRefPubMedGoogle Scholar
  32. 32.
    Butcher KS, Baird T, Macgregor L et al (2004) Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke 35(8):1879–1885. doi: 10.1161/01.STR.0000131807.54742.1a CrossRefPubMedGoogle Scholar
  33. 33.
    Xi G, Hua Y, Bhasin RR et al (2001) Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke 32(12):2932–2938CrossRefPubMedGoogle Scholar
  34. 34.
    Ovesen C, Havsteen I, Rosenbaum S et al (2014) Prediction and observation of post-admission hematoma expansion in patients with intracerebral hemorrhage. Front Neurol 5:186. doi: 10.3389/fneur.2014.00186 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Haoli Xu
    • 1
  • Rui Li
    • 1
  • Yuxia Duan
    • 1
  • Jincheng Wang
    • 1
  • Shuailiang Liu
    • 1
  • Yue Zhang
    • 1
  • Wenwen He
    • 1
  • Xiaotao Qin
    • 1
  • Guoquan Cao
    • 1
  • Yunjun Yang
    • 1
  • Qichuan Zhuge
    • 2
  • Jun Yang
    • 3
  • Weijian Chen
    • 1
  1. 1.Molecular and Digital Medical Imaging Institute/Department of RadiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Zhenjiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  3. 3.GE Healthcare ChinaShanghaiChina

Personalised recommendations