Skip to main content
Log in

Gcd-monoids arising from homotopy groupoids

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

The interval monoid \(\Upsilon ({P})\) of a poset P is defined by generators [xy], where \(x\le y\) in P, and relations \([x,x]=1\), \([x,z]=[x,y]\cdot [y,z]\) for \(x\le y\le z\). It embeds into its universal group \(\Upsilon ^{\pm }({P})\), the interval group of P, which is also the universal group of the homotopy groupoid of the chain complex of P. We prove the following results:

  • The monoid \(\Upsilon ({P})\) has finite left and right greatest common divisors of pairs (we say that it is a gcd-monoid) iff every principal ideal (resp., filter) of P is a join-semilattice (resp., a meet-semilattice).

  • For every group G, there is a connected poset P of height 2 such that \(\Upsilon ({P})\) is a gcd-monoid and G is a free factor of \(\Upsilon ^{\pm }({P})\) by a free group. Moreover, P can be taken to be finite iff G is finitely presented.

  • For every finite poset P, the monoid \(\Upsilon ({P})\) can be embedded into a free monoid.

  • Some of the results above, and many related ones, can be extended from interval monoids to the universal monoid \({\mathrm{U}_\mathrm{mon}}({S})\) of any category S. This enables us, in particular, to characterize the embeddability of \({\mathrm{U}_\mathrm{mon}}({S})\) into a group, by stating that it holds at the hom-set level. We thus obtain new easily verified sufficient conditions for embeddability of a monoid into a group.

We illustrate our results by various examples and counterexamples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adjan, S.I.: Defining relations and algorithmic problems for groups and semigroups. Trudy Mat. Inst. Steklov. 85, 123 (1966)

    MathSciNet  Google Scholar 

  2. Bergman, G.M.: On monoids, \(2\)-firs, and semifirs. Semigroup Forum 89(2), 293–335 (2014)

    Article  MathSciNet  Google Scholar 

  3. Brieskorn, E., Saito, K.: Artin-gruppen und Coxeter-gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MathSciNet  Google Scholar 

  4. Dehornoy, P.: Complete positive group presentations. J. Algebra 268(1), 156–197 (2003)

    Article  MathSciNet  Google Scholar 

  5. Dehornoy, P.: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22, European Mathematical Society (EMS), Zürich: with François Digne. Eddy Godelle, Daan Krammer and Jean Michel (2015)

  6. Dehornoy, P.: Multifraction reduction I: the 3-Ore case and Artin-Tits groups of type FC. J. Comb. Algebra 1(2), 185–228 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Why are Braids Orderable? Panoramas et Synthèses [Panoramas and Syntheses], vol. 14. Société Mathématique de France, Paris (2002)

    MATH  Google Scholar 

  8. Dehornoy, P., Wehrung, F.: Multifraction reduction III: the case of interval monoids. J. Comb. Algebra 1(4), 341–370 (2017)

    Article  MathSciNet  Google Scholar 

  9. Freyd, P.: Redei’s finiteness theorem for commutative semigroups. Proc. Am. Math. Soc. 19, 1003 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Garside, F.A.: The braid group and other groups. Q. J. Math. Oxford Ser. (2) 20, 235–254 (1969)

    Article  MathSciNet  Google Scholar 

  11. Higgins, P.J.: Notes on Categories and Groupoids, Van Nostrand Reinhold Co., London-New York-Melbourne, Van Nostrand Reinhold Mathematical Studies, No. 32 (1971)

  12. Meakin, J.: Groups and semigroups: connections and contrasts, Groups St. Andrews: Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge University Press, Cambridge 2007, 357–400 (2005)

  13. Remmers, J.H.: On the geometry of semigroup presentations. Adv. Math. 36(3), 283–296 (1980)

    Article  MathSciNet  Google Scholar 

  14. Reynaud, E.: Algebraic fundamental group and simplicial complexes. J. Pure Appl. Algebra 177(2), 203–214 (2003)

    Article  MathSciNet  Google Scholar 

  15. Rota, G.-C.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368 (1964)

    Article  MathSciNet  Google Scholar 

  16. Rotman, J.J.: An Introduction to Algebraic Topology. Graduate Texts in Mathematics, vol. 119. Springer, New York (1988)

    MATH  Google Scholar 

  17. Rotman, J.J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics, vol. 148, 4th edn. Springer, New York (1995)

    Book  Google Scholar 

  18. Spehner, J.-C.: Présentations et présentations simplifiables d’un monoïde simplifiable. Semigroup Forum 14(4), 295–329 (1977)

    Article  MathSciNet  Google Scholar 

  19. Spehner, J.-C.: Every finitely generated submonoid of a free monoid has a finite Mal\(^\prime \) cev’s presentation. J. Pure Appl. Algebra 58(3), 279–287 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Wehrung.

Additional information

Communicated by Markus Lohrey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehrung, F. Gcd-monoids arising from homotopy groupoids. Semigroup Forum 97, 493–522 (2018). https://doi.org/10.1007/s00233-018-9950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-018-9950-5

Keywords

Navigation