Advertisement

Frobenius restricted varieties in numerical semigroups

  • Aureliano M. Robles-Pérez
  • José Carlos Rosales
Research Article
  • 9 Downloads

Abstract

The common behaviour of many families of numerical semigroups led to defining, firstly, the Frobenius varieties and, secondly, the (Frobenius) pseudo-varieties. However, some interesting families are still not covered by these definitions. To overcome this situation, here we introduce the concept of Frobenius restricted variety (or R-variety). We generalize most of the results for varieties and pseudo-varieties to R-varieties. In particular, we study the tree structure that arises within them.

Keywords

R-varieties Frobenius restricted number Frobenius varieties Frobenius pseudo-varieties Monoids Numerical semigroups Tree (associated to an R-variety) 

Notes

Acknowledgements

The authors would like to thank both of the referees for providing constructive comments and help in improving the contents of this paper.

References

  1. 1.
    Bras-Amorós, M., García-Sánchez, P.A.: Patterns on numerical semigroups. Linear Algebra Appl. 414, 652–669 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bras-Amorós, M., García-Sánchez, P.A., Vico-Oton, A.: Nonhomogeneous patterns on numerical semigroups. Int. J. Algebra Comput. 23, 1469–1483 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Delgado, M., García-Sánchez, P.A., Rosales, J.C., Urbano-Blanco, J.M.: Systems of proportionally modular Diophantine inequalities. Semigroup Forum 76, 469–488 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem, Oxford Lecture Series Mathematics Applications, vol. 30. Oxford University Press, Oxford (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Robles-Pérez, A.M., Rosales, J.C.: Frobenius pseudo-varieties in numerical semigroups. Ann. Mat. Pura Appl. 194, 275–287 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Robles-Pérez, A.M., Rosales, J.C.: Numerical semigroups in a problem about cost-effective transport. Forum Math. 29, 329–345 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Robles-Pérez, A.M., Rosales, J.C.: Numerical semigroups in a problem about economic incentives for consumers. Filomat (accepted). arXiv:1605.03900
  8. 8.
    Rosales, J.C.: Families of numerical semigroups closed under finite intersections and for the Frobenius number. Houst. J. Math. 34, 339–348 (2008)MathSciNetMATHGoogle Scholar
  9. 9.
    Rosales, J.C., Branco, M.B., Torrão, D.: Sets of positive integers closed under product and the number of decimal digits. J. Number Theory 147, 1–13 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Branco, M.B.: Numerical semigroups with maximal embedding dimension. Int. J. Commut. Rings 2, 47–53 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Branco, M.B.: Arf numerical semigroups. J. Algebra 276, 3–12 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Branco, M.B.: Saturated numerical semigroups. Houst. J. Math. 30, 321–330 (2004)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de ÁlgebraUniversidad de GranadaGranadaSpain

Personalised recommendations