Advertisement

Semigroup Forum

, Volume 97, Issue 1, pp 7–31 | Cite as

On the subsemigroup complex of an aperiodic Brandt semigroup

  • Stuart Margolis
  • John Rhodes
  • Pedro V. Silva
RESEARCH ARTICLE
  • 47 Downloads

Abstract

We introduce the subsemigroup complex of a finite semigroup S as a (boolean representable) simplicial complex defined through chains in the lattice of subsemigroups of S. We present a research program for such complexes, illustrated through the particular case of combinatorial Brandt semigroups. The results include alternative characterizations of faces and facets, asymptotical estimates on the number of facets, or establishing when the complex is pure or a matroid.

Keywords

Brandt semigroup Lattice of subsemigroups Simplicial complex Boolean representable simplicial complex Matroid 

Notes

Acknowledgements

Stuart Margolis acknowledges support from the Binational Science Foundation (BSF) of the United States and Israel, Grant Number 2012080. John Rhodes acknowledges support from the Simons Foundation. Pedro V. Silva was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER), under the partnership agreement PT2020.

References

  1. 1.
    Björner, A., Wachs, M.L.: Nonpure shellable complexes and posets I. Trans. Am. Math. Soc. 348, 1299–1327 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Cameron, P.J., Gadouleau, M., Mitchell, J.D., Peresse, Y.: Chains of subsemigroups. Isr. J. Math. 220(1), 479–508 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cioabǎ, S.M., Ram Murty, M.: A First Course in Graph Theory and Combinatorics, Texts and Readings in Mathematics 55. Hindustan Book Agency, New Delhi (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. Mathematical Surveys of the American Mathematical Society, No. 7, Providence (1961)Google Scholar
  5. 5.
    Graham, R.L.: On finite 0-simple semigroups and graph theory. Math. Syst. Theory 2, 325–339 (1968)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Graham, N., Graham, R.L., Rhodes, J.: Maximal subsemigroups of finite semigroups. J. Comb. Theory 4, 203–209 (1968)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Izhakian, Z.: Tropical arithmetic and tropical matrix algebra. Comm. Algebra 37(4), 1–24 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Izhakian, Z., Rhodes, J.: New Representations of Matroids and Generalizations, preprint, arXiv:1103.0503 (2011)
  9. 9.
    Izhakian, Z., Rhodes, J.: Boolean Representations of Matroids and Lattices, preprint, arXiv:1108.1473 (2011)
  10. 10.
    Izhakian, Z., Rhodes, J.: C-Independence and c-Rank of Posets and Lattices, preprint, arXiv:1110.3553 (2011)
  11. 11.
    Izhakian, Z., Rowen, L.: The tropical rank of a tropical matrix. Commun. Algebra 37(11), 3912–3927 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Izhakian, Z., Rowen, L.: Supertropical algebra. Adv. Math. 225(8), 2222–2286 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Izhakian, Z., Rowen, L.: Supertropical matrix algebra. Isr. J. Math. 182, 383–424 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jones, P.R.: Semimodular inverse semigroups. J. Lond. Math. Soc. (2) 17(3), 446–456 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Klaška, J.: Transitivity and partial order. Math. Bohem. 122(1), 75–82 (1997)MathSciNetMATHGoogle Scholar
  16. 16.
    Margolis, S., Rhodes, J., Silva, P.V.: On the topology of a boolean representable simplicial complex. Int. J. Algebra Comput. 27(1), 121–156 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Margolis, S., Rhodes, J., Silva, P.V.: On the Dowling and Rhodes Lattices and Wreath Products, arxiv: 1710.05314, preprint (2017)
  18. 18.
    Oxley, J .G.: Matroid Theory. Oxford Science Publications, Oxford (1992)MATHGoogle Scholar
  19. 19.
    Pfeiffer, G.: Counting transitive relations. J. Integer Seq. 7, Article 0.4.32 (2004)Google Scholar
  20. 20.
    Rhodes, J., Silva, P.V.: Boolean Representations of Simplicial Complexes and Matroids, Springer Monographs in Mathematics. Springer, Berlin (2015)Google Scholar
  21. 21.
    Rhodes, J., Steinberg, B.: The q-Theory of Finite Semigroups, Springer Monographs in Mathematics (2009)Google Scholar
  22. 22.
    Zaslavsky, T.: Biased graphs II. The three matroids. J. Combin. Theory Ser. B 51, 46–72 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  2. 2.Department of MathematicsUniversity of California-BerkeleyBerkeleyUSA
  3. 3.Centro de Matemática, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations