On a resolvent approach for perturbed semigroups and application to \(L^1\)-neutron transport theory

Research Article


We give new sufficient and practical conditions in terms of the generators ensuring the stability of the critical or the essential type of a perturbed \(C_0\)-semigroup in general Banach spaces. We apply our theoretical results in order to investigate the control and in particular the time asymptotic behavior of solutions to a broad class of transport equations in \(L^1\)-spaces and higher dimension. Our results improve, complete and enrich several earlier works.


Perturbations Spectral analysis Critical type stability Essential type stability Resolvent approach Neutron transport theory 


  1. 1.
    Ben Amara, K., Megdiche, H., Taoudi, M.A.: On eventual norm continuity and compactness of the difference of two \(C_0\)-semigroups (submitted)Google Scholar
  2. 2.
    Bátkai, A., Kramar Fijavž, M., Rhandi, A.: Positive Operator Semigroups from Finite to Infinite Dimensions. Birkhauser, Springer, Basel (2016)MATHGoogle Scholar
  3. 3.
    Bàtkai, A., Maniar, L., Rhandi, A.: Regularity properties of perturbed Hille–Yosida operators and retarded differential equations. Semigroup Forum 64, 55–70 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brendle, S.: On the asymptotic behavior of perturbed strongly continuous semigroups. Math. Nachr. 226, 35–47 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brendle, S., Nagel, R., Poland, J.: On the spectral mapping theorem for perturbed strongly continuous semigroups. Arch. Math. 74, 365–378 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, Berlin (1999)Google Scholar
  7. 7.
    Hille, H., Phillips, R.E.: Functional Analysis and Semigroups, vol. 31. American Mathematical Society Colloquium Publications, Providence (1957)MATHGoogle Scholar
  8. 8.
    Latrach, K., Megdiche, H., Taoudi, M.A.: A compactness result for perturbed semigroups and application to a transport model. J. Math. Anal. Appl. 359, 88–94 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Latrach, K., Megdiche, H.: Spectral properties and regularity of solutions to transport equations in slab geometry. Math. Models Appl. Sci. 29, 2089–2121 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Latrach, K.: Compactness results for transport equations and applications. Math. Models Methods Appl. Sci. 11(7), 1181–1202 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Li, M., Gu, X., Huang, F.L.: On unbounded perturbations of semigroups compactness and norm continuity. Semigroup Forum 65, 58–70 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mokhtar-Kharroubi, M., Sbihi, M.: Spectral mapping theorems for neutron transport, \(L^1\) -theory. Semigroup Forum 72, 249–282 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mokhtar-Kharroubi, M.: Optimal spectral theory of the linear Boltzmann equation. J. Funct. Anal. 226, 21–47 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mokhtar-Kharroubi, M.: On \(L^1\)-spectral theory of neutron transport. J. Differ. Integral Equ. 18, 1221–1242 (2005)MATHGoogle Scholar
  15. 15.
    Mokhtar-Kharroubi, M.: Mathematical Topics in Neutron Transport Theory, New Aspects. Series on Advances in Mathematics for Applied Sciences, vol. 46. World Scientific, Singapore (1997)CrossRefMATHGoogle Scholar
  16. 16.
    Mokhtar-Kharroubi, M.: Time asymptotic behaviour and compactness in neutron transport theory. Eur. J. Mech. B Fluid 11, 39–68 (1992)Google Scholar
  17. 17.
    Nagel, R., Poland, J.: The critical spectrum of a strongly continuous semigroup. Adv. Math. 152, 120–133 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nagel, R., Piazzera, S.: On the regularity properties of perturbed semigroups. In: International Workshop on Operator Theory (Cefalu‘, 1997), Rend. Circ. Mat. Palermo, vol. 56, pp. 99–110 (1998)Google Scholar
  19. 19.
    Rhandi, A.: Positivity and stability for a population equation with diffusion on \(L^1\). Positivity 2, 101–113 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sbihi, M.: A resolvent approach to the stability of essential and critical spectra of perturbed \(C_0\)-semigroups on Hilbert spaces with applications to transport theory. J. Evolut. Equ. 7, 35–58 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Song, D.: Some notes on spectral properties of \(C_0\) semigroups generated by linear transport operators. Transp. Theory Stat. Phys. 26, 233–242 (1997)CrossRefMATHGoogle Scholar
  22. 22.
    Song, D., Greenberg, W.: Spectral properties of transport equations for slab geometry in \(L^1\) with reentry boundary conditions. Transp. Theory Stat. Phys. 30, 325–355 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Vidav, I.: Existence and uniqueness of non negative eigenfunction of the Botltzmann operator. J. Math. Anal. Appl. 22, 144–155 (1968)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Voigt, J.: On the convex compactness property for the strong operator topology. Note di Mat. 12, 259–269 (1992)MathSciNetMATHGoogle Scholar
  25. 25.
    Voigt, J.: A perturbation theorem for the essential spectral radius of strongly continuous semigroups. Mh. Math. 90, 153–161 (1980)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Weis, L.W.: A generalization of the Vidav-Jorgens perturbation theorem for semigroups and its application to transport theory. J. Math. Anal. Appl. 129, 6–23 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Algebra, Geometry and Spectral Theory, Department of Mathematics, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Biomedical Department, Higher Institute of BiotechnologyUniversity of SfaxSfaxTunisia
  3. 3.National School of Applied SciencesCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations