Skip to main content
Log in

Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO’s catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ädelroth P, Gennis RB, Brzezinski P (1998) Role of the pathway through k (i-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 37(8):2470–2476

    Article  PubMed  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  PubMed  CAS  Google Scholar 

  • Bagga Jay, Heinz Adrain (2002) Jgraph—a java based system for drawing graphs and running graph algorithms. In: Mutzel Petra, Jünger Michael, Leipert Sebastian (eds) Graph drawing, vol 2265. Lecture notes in computer science. Springer, Berlin, pp 459–460

    Chapter  Google Scholar 

  • Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179

    Article  PubMed  CAS  Google Scholar 

  • Belevich I, Bloch DA, Belevich N, Wikström M, Verkhovsky MI (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci USA 104:2685–2690

    Article  PubMed  CAS  Google Scholar 

  • Bondar AN, Smith JC (2009) Water molecules in short- and long-distance proton transfer steps of bacteriorhodopsin proton pumping. Isr J Chem 49:155–161

    Article  CAS  Google Scholar 

  • Brändén Gisela, Pawate Ashtamurthy S, Gennis Robert B, Brzezinski Peter (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103(2):317–322

    Article  PubMed  CAS  Google Scholar 

  • Brzezinski P, Adelroth P (1998) Proton-controlled electron transfer in cytochrome c oxidase: functional role of the pathways through Glu 286 and Lys 362. Acta Physiol Scand Suppl 643:7–16

    PubMed  CAS  Google Scholar 

  • Son CY, Yethiraj A, Cui Q (2017) Cavity hydration dynamics in cytochrome c oxidase and functional implications. Proc Natl Acad Sci USA 114(42):E8830–E8836

  • Chaumont A, Baer M, Mathias G, Marx D (2008) Potential proton-release channels in bacteriorhodopsin. ChemPhysChem 9:2751–2758

    Article  PubMed  CAS  Google Scholar 

  • Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York, p 19

    Google Scholar 

  • Cukier RI (2005) A molecular dynamics study of water chain formation in the proton-conducting k channel of cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1706(1):134–146

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen LG (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Dellago C, Naor MM, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902

    Article  PubMed  CAS  Google Scholar 

  • Goyal P, Yang S, Cui Q (2015) Microscopic basis for kinetic gating in cytochrome c oxidase: insights from qm/mm analysis. Chem Sci 6(1):826–841

    Article  PubMed  CAS  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2005) Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell 97:479–486

    Article  PubMed  CAS  Google Scholar 

  • Helabad MB, Ghane T, Reidelbach M, Woelke AL, Knapp EW, Imhof P (2017) Protonation-state-dependent communication in cytochrome c oxidase. Biophys J 113(4):817–828

    Article  CAS  Google Scholar 

  • Henry RM, Yu C-H, Rodinger T, Pomès R (2009) Functional hydration and conformational gating of proton uptake in cytochrome c oxidase. J Mol Biol 387(5):1165–1185

    Article  PubMed  CAS  Google Scholar 

  • Henry RM, Caplan D, Fadda E, Pomès RA (2011) Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase. J Phys 23(23):234102

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Ilan B, Tajkhorshid E, Schulten K, Voth GA (2004) The mechanism of proton exclusion in aquaporin channels. Proteins Struct Funct Bioinform 55:223–228

    Article  CAS  Google Scholar 

  • Jiancong X, Sharpe MA, Qin L, Ferguson-Miller S, Voth Gregory A (2007) Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome c oxidase: identification of a protonated water cluster. J Am Chem Soc 129(10):2910–2913

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kaila VR, Verkhovsky MI, Hummer G, Wikström M (2008) Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci USA 105(17):6255–6259

    Article  PubMed  Google Scholar 

  • Kandt C, Gerwert K, Schlitter J (2005) Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins Struct Funct Bioinform 58:528–537

    Article  CAS  Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the charmm all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis Robert B (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94(17):9085–9090

    Article  PubMed  CAS  Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69:066138

    Article  CAS  Google Scholar 

  • Lee HJ, Svahn E, Swanson JM, Lepp H, Voth GA, Brzezinski P, Gennis RB (2010) Intricate role of water in proton transport through cytochrome c oxidase. J Am Chem Soc 132:16225–16239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levitt M, Sharon R (1988) Accurate simulation of protein dynamics in solution. Proc Natl Acad Sci USA 85:7557–7561

    Article  PubMed  CAS  Google Scholar 

  • Liangn R, Swanson JM, Wikström M, Voth G (2017) Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase. Proc Natl Acad Sci USA 114(23):5924–5929

    Article  CAS  Google Scholar 

  • Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113:10663–10675

    Article  CAS  Google Scholar 

  • Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

  • Mahoney MW, Jorgensen WL (2001) Diffusion constant of the tip5p model of liquid water. J Chem Phys 114:363

    Article  CAS  Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  • Namslauer A, Pawate AS, Gennis RB, Brzezinski P (2003) Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase. Proc Natl Acad Sci USA 100(26):15543–15547

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AS, Campos SR, Baptista AM, Soares CM (2016) Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochim Biophys Acta Bioenerg 1857(6):759–771

    Article  CAS  Google Scholar 

  • Pawate AS, Morgan J, Namslauer A, Mills D, Brzezinski P, Ferguson-Miller S, Gennis RB (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41:13417–13423

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Swanson JM, Kang SG, Zhou R, Voth GA (2014) Hydrated excess protons can create their own water wires. J Phys Chem B 119:9212–9218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid Emad, Villa Elizabeth, Chipot Christophe, Skeel Robert D, Kale Laxmikant, Schulten Klaus (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pomès R, Hummer G, Wikström M (1998) Structure and dynamics of a proton shuttle in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1365(1):255–260

    Article  Google Scholar 

  • Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA 103(44):16117–16122

    Article  PubMed  CAS  Google Scholar 

  • Riistama S, Hummer G, Puustinen A, Dyer RB, Woodruff WH, Wikström M (1997) Bound water in the proton translocation mechanism of the haem-copper oxidases. FEBS Lett 414(2):275–280

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Taraphder S (2008) A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. J Phys Chem B 112(43):13597–13607

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints. J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sagnella DE, Voth GA (1996) Structure and dynamics of hydronium in the ion channel gramicidin A. Biophys J 70:2043–2051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma V, Wikström M, Kaila VR (2012) Dynamic water networks in cytochrome cbb 3 oxidase. Biochim Biophys Acta Bioenerg 1817(5):726–734

    Article  CAS  Google Scholar 

  • Stillinger FH (1980) Water revisited. Science 209:451–457

    Article  PubMed  CAS  Google Scholar 

  • Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome p450cam. J Am Chem Soc 125(13):3931–3940

    Article  PubMed  CAS  Google Scholar 

  • Taraphder S, Maupin CM, Swanson JM, Voth GA (2016) Coupling protein dynamics with proton transport in human carbonic anhydrase II. J Phys Chem B 120(33):8389–8404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuukkanen A, Kaila VR, Laakkonen L, Hummer G, Wikström M (2007) Dynamics of the glutamic acid 242 side chain in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1767(9):1102–1106

    Article  CAS  Google Scholar 

  • Wikström M, Verkhovsky MI, Hummer G (2003) Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim Biophys Acta (BBA) Bioenerg 1604(2):61–65

    Article  CAS  Google Scholar 

  • Wikström M, Sharma V, Kaila VR, Hosler JP, Hummer G (2015) New perspectives on proton pumping in cellular respiration. Chem Rev 115(5):2196–2221

    Article  PubMed  CAS  Google Scholar 

  • Woelke AL, Galstyan G, Galstyan A, Meyer T, Heberle J, Knapp EW (2013) Exploring the possible role of glu286 in cco by electrostatic energy computations combined with molecular dynamics. J Phys Chem B 117(41):12432–12441

    Article  PubMed  CAS  Google Scholar 

  • Woelke AL, Galstyan G, Knapp EW (2014) Lysine 362 in cytochrome c oxidase regulates opening of the k-channel via changes in pKa and conformation. Biochim Biophys Acta Bioenerg 1837(12):1998–2003

    Article  CAS  Google Scholar 

  • Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K (2010) Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: A proton diode. Angew Chem Int Ed 49:6889–6893

    Article  CAS  Google Scholar 

  • Yamashita A, Voth GA (2011) Insight into the mechanism of proton transport in cytochrome c oxidase. J Am Chem Soc 134:1147–1152

    Article  CAS  Google Scholar 

  • Yang L, Skjevik ÅA, Du WG, Noodleman L, Walker RC, Götz AW (2016) Water exit pathways and proton pumping mechanism in b-type cytochrome c oxidase from molecular dynamics simulations. Biochim Biophys Acta Bioenerg 1857:1594–1606

    Article  CAS  Google Scholar 

  • Zhu J, Han H, Pawate A, Gennis RB (2010) Decoupling mutations in the d-channel of the aa3-type cytochrome c oxidase from rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping. Biochemistry 49(21):4476–4482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for computational resources provided by the North-German Supercomputing Alliance (HLRN). IT support by Jens Dreger of the Physics department at Freie Universität Berlin is gratefully acknowledged.

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (DFG) provided through project C5 “Redox-state dependent communication and protonation dynamics in cytochrome c oxidase” in the Sonderforschungsbereich 1078 (SFB 1078) on ’Protonation Dynamics in Protein Function’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Imhof.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghane, T., Gorriz, R.F., Wrzalek, S. et al. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase. J Membrane Biol 251, 299–314 (2018). https://doi.org/10.1007/s00232-018-0019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-0019-x

Keywords

Navigation