Skip to main content
Log in

Amphipol-Mediated Screening of Molecular Orthoses Specific for Membrane Protein Targets

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for “artificial alpha repeat protein”) have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal “Velcro” to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2XTY:

E. coli rich media

A8-35:

A specific type of poly(acrylic acid)-based amphipol

APol:

Amphipol

BAPol:

Biotinylated A8-35

BNAPol:

Biotinylated non-ionic amphipol

BR:

Bacteriorhodopsin

cmc:

Critical micellar concentration

DDM:

Dodecyl-β-d-maltoside

\(\overline{DP}_{n}\) :

Number-average degree of polymerization

EDTA:

Ethylene diamine tetraacetic acid

EM:

Electron microscopy

His-tag:

Hexahistidine tag

IPTG:

Isopropyl-β-d-1-thiogalactopyranoside

MD:

Molecular dynamics

\(\overline{M}_{n}\) :

Number-average molar mass

MP:

Membrane protein

MW:

Molecular weight

MWCO:

MW cut-off

NAPol:

Non-ionic amphipol

NMR:

Nuclear magnetic resonance

NTA:

Nitrilotriacetic acid

OD600nm :

Optical density measured at 600 nm

βOG:

n-octyl-β-d-glucopyranoside

PBS:

Phosphate buffer saline

PEG:

Polyethylene glycol

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size-exclusion chromatography

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline supplemented with Tween 20 (w/v)

Tris:

Tris(hydroxymethyl)aminomethane

References

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Basit H, Sharma S, Van der Heyden A, Gondran C, Breyton C, Dumy P, Winnik FM, Labbé P (2012) Amphipol mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem Commun 48:6037–6039

    Article  CAS  Google Scholar 

  • Batchelor RH, Sarkez A, Cox WG, Johnson I (2007) Fluorometric assay for quantitation of biotin covalently attached to proteins and nucleic acids. Biotechniques 43:503–507

    Article  CAS  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères J-L, Durand G, Zito F, Pucci B, Popot J-L (2012) Non-ionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430

    Article  CAS  Google Scholar 

  • Berry EA, Huang L-S, DeRose V (1991) Ubiquinol-cytochrome c oxidoreductase from higher plants. Isolation and characterization of the bc 1 complex from potato tuber mitochondria. J Biol Chem 266:9064–9077

    CAS  PubMed  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang L-S, Crofts AR (2000) Structure and function of cytochrome bc 1 complexes. Annu Rev Biochem 69:1005–1075

    Article  CAS  Google Scholar 

  • Binz HK, Stumpp MT, Forrer P, Amstutz P, Pluckthun A (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 332:489–503

    Article  CAS  Google Scholar 

  • Boersma YL, Plückthun A (2011) DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol 22:849–857

    Article  CAS  Google Scholar 

  • Broutin I, Benabdelhak H, Moreel X, Lascombe MB, Lerouge D, Ducruix A (2005) Expression, purification, crystallization and preliminary X-ray studies of the outer membrane efflux proteins OprM and OprN from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:315–318

    Article  CAS  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot J-L (2010) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur Biophys J 39:623–630

    Article  CAS  Google Scholar 

  • Charvolin D, Perez JB, Rouviere F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410

    CAS  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi:10.1007/s00232-014-9694-4

    Article  CAS  Google Scholar 

  • Collins (2012) The Collins english dictionary. HarperCollins Publishers Limited, Glasgow

    Google Scholar 

  • Cronan JE Jr (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265:10327–10333

    CAS  PubMed  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence and absence of lipids. Functional consequences. Eur Biophys J 42:85–101

    Article  CAS  Google Scholar 

  • Della Pia EA, Holm J, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014a) A step closer to membrane protein multiplexed nano-arrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853

    Article  CAS  Google Scholar 

  • Della Pia EA, Westh Hansen R, Zoonens M, Martinez KL (2014b) Amphipols: a versatile toolbox suitable for applications of membrane proteins in synthetic biology. J Membr Biol. doi:10.1007/s00232-014-9663-y

    Article  CAS  Google Scholar 

  • Etzkorn M, Gelev V, Raschle T, Wagner G (2014) Use of amphipols for the NMR structural characterization of 7-TM receptors. J Membr Biol. doi:10.1007/s00232-014-9657-9

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-Kammoun Z, Desmadril M, van Tilbeurgh H, Minard P (2013) Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One 8:e71512

    Article  CAS  Google Scholar 

  • Huynh K, Cohen M, Moiseenkova-Bell V (2014) Application of amphipols for structure-functional analysis of TRP channels. J Membr Biol. doi:10.1007/s00232-014-9684-6

    Article  CAS  Google Scholar 

  • Koide S (2009) Engineering of recombinant crystallization chaperones. Curr Opin Struct Biol 19:449–457

    Article  CAS  Google Scholar 

  • Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot J-L (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. doi:10.1093/nar/gku250

    Article  CAS  Google Scholar 

  • Le Bon C, Popot J-L, Giusti F (2014b) Labeling and functionalizing amphipols for biological applications. J Membr Biol. doi:10.1007/s00232-014-9655-y

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7

    Article  CAS  Google Scholar 

  • Lieberman RL, Culver JA, Entzminger KC, Pai JC, Maynard JA (2011) Crystallization chaperone strategies for membrane proteins. Methods 55:293–302

    Article  CAS  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  Google Scholar 

  • Mokhonov V, Mokhonova E, Yoshihara E, Masui R, Sakai M, Akama H, Nakae T (2005) Multidrug transporter MexB of Pseudomonas aeruginosa: overexpression, purification, and initial structural characterization. Protein Expr Purif 40:91–100

    Article  CAS  Google Scholar 

  • Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183

    Article  CAS  Google Scholar 

  • Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    Article  CAS  Google Scholar 

  • Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nature Struct Biol 2:842–846

    Article  CAS  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  Google Scholar 

  • Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J Membr Biol. doi:10.1007/s00232-014-9654-z

    Article  CAS  Google Scholar 

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794:782–793

    Article  CAS  Google Scholar 

  • Seeger MA, Zbinden R, Flutsch A, Gutte PG, Engeler S, Roschitzki-Voser H, Grutter MG (2013) Design, construction, and characterization of a second-generation DARPin library with reduced hydrophobicity. Protein Sci 22:1239–1257

    Article  CAS  Google Scholar 

  • Sennhauser G, Grutter MG (2008) Chaperone-assisted crystallography with DARPins. Structure 16:1443–1453

    Article  CAS  Google Scholar 

  • Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot JL, Ebel C, Pucci B (2012) Non-ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639

    Article  CAS  Google Scholar 

  • Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  Google Scholar 

  • Smith AL (1967) Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small scale. Methods Enzymol 10:81–86

    Article  CAS  Google Scholar 

  • Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ (2003) A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods 274:233–244

    Article  CAS  Google Scholar 

  • Stroebel D, Sendra V, Cannella D, Helbig K, Nies D, Covès J (2007) Oligomeric behavior of the RND transporters CusA and AcrB in micellar solution of detergent. Biochim Biophys Acta 1768:1567–1573

    Article  CAS  Google Scholar 

  • Stumpp MT, Forrer P, Binz HK, Plückthun A (2003) Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 332:471–487

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • Urvoas A, Guellouz A, Valerio-Lepiniec M, Graille M, Durand D, Desravines DC, van Tilbeurgh H, Desmadril M, Minard P (2010) Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (alphaRep) based on thermostable HEAT-like repeats. J Mol Biol 404:307–327

    Article  CAS  Google Scholar 

  • Zoonens M, Popot JL (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot JL (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Zito F, Martinez KL, Popot J-L (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane protein production for structural analysis. Springer, New York, in the press

    Google Scholar 

Download references

Acknowledgments

Particular thanks are due to J.D. Perlmutter and J.N. Sachs for communication of a molecular dynamics model of an A8-35 particle. This research was supported by ANR-2010-BLAN-1535, by the French Centre National de la Recherche Scientifique (CNRS), by Université Paris-5 Paris Descartes, by Université Paris-7 Denis Diderot, and by grant “DYNAMO”, ANR-11-LABX-0011-01 from the French “Initiative d’Excellence” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Picard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrandez, Y., Dezi, M., Bosco, M. et al. Amphipol-Mediated Screening of Molecular Orthoses Specific for Membrane Protein Targets. J Membrane Biol 247, 925–940 (2014). https://doi.org/10.1007/s00232-014-9707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9707-3

Keywords

Navigation