Skip to main content
Log in

High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

An Erratum to this article was published on 22 February 2017

Abstract

Amphipols (APols) have become important tools for the stabilization, folding, and in vitro structural and functional studies of membrane proteins (MPs). Direct crystallization of MPs solubilized in APols would be of high importance for structural biology. However, despite considerable efforts, it is still not clear whether MP/APol complexes can form well-ordered crystals suitable for X-ray crystallography. In the present work, we show that an APol-trapped MP can be crystallized in meso. Bacteriorhodopsin (BR) trapped by APol A8-35 was mixed with a lipidic mesophase, and crystallization was induced by adding a precipitant. The crystals diffract beyond 2 Å. The structure of BR was solved to 2 Å and found to be indistinguishable from previous structures obtained after transfer from detergent solutions. We suggest the proposed protocol of in meso crystallization to be generally applicable to APol-trapped MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunmanee W, Harris JR, Lakey JH (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J Membr Biol. doi:10.1007/s00232-014-9640-5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banères JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322

    PubMed  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot J-L (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borshchevskiy VI, Round ES, Popov AN, Büldt G, Gordeliy VI (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409:813–825

    Article  CAS  PubMed  Google Scholar 

  • Caffrey M (2011) Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem Soc Trans 39:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  CAS  PubMed  Google Scholar 

  • Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi:10.1007/s00232-014-9694-4

    Article  CAS  PubMed  Google Scholar 

  • Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • daCosta CJB, Baenziger JE (2003) A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallization. Acta Crystallogr D Biol Crystallogr 59:77–83

    Article  PubMed  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot J-L, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  CAS  PubMed  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101

    Article  CAS  PubMed  Google Scholar 

  • Damian M, Marie J, Leyris J-P, Fehrentz J-A, Verdié P, Martinez J, Banères J-L, Mary S (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 287:3630–3641

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  • Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6

    Article  CAS  PubMed  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  PubMed  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RWH, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordeliy VI, Schlesinger R, Efremov R, Büldt G, Heberle J (2003) Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin. Methods Mol Biol 228:305–316

    CAS  PubMed  Google Scholar 

  • Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  • Joseph JS, Liu W, Kunken J, Weiss TM, Tsuruta H, Cherezov V (2011) Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 55:342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci 93:14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi JK (2004) X-ray diffraction of bacteriorhodopsin photocycle intermediates (Review). Mol Membr Biol 21:143–150

    Article  CAS  PubMed  Google Scholar 

  • Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie AGW, Powell HR (2007) Processing diffraction data with MOSFLM. In: Read RJ, Sussman JL (eds) Evolving methods for macromolecular crystallography. Springer, Netherlands, pp 41–51

    Chapter  Google Scholar 

  • Lindblom G, Rilfors L (1989) Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biochim Biophys Acta—Rev Biomembr 988:221–256

    Article  CAS  Google Scholar 

  • London E, Khorana HG (1982) Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem 257:7003–7011

    CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  • Marie E, Sagan S, Cribier S, Tribet C (2014). Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J Membr Biol

  • Mary S, Damian M, Rahmeh R, Marie J, Mouillac B, Banères J-L (2014) Amphipols in G protein-coupled receptor pharmacology: what are they good for? J Membr Biol. doi:10.1007/s00232-014-9665-9

    Article  CAS  PubMed  Google Scholar 

  • Michel H (1989) Crystallization of membrane proteins. In: Barber J, Malkin R (eds) Techniques and new developments in photosynthesis research. Springer, US, pp 11–15

    Chapter  Google Scholar 

  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JK, Kuhn Hoffmann A, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

    Article  CAS  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  PubMed  Google Scholar 

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    Article  CAS  PubMed  Google Scholar 

  • Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell H-J, Kleinschmidt JH, Popot J-L (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961

    Article  CAS  PubMed  Google Scholar 

  • Pocanschi CL, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  PubMed  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol 283:463–474

    Article  CAS  PubMed  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci 93:15047–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  PubMed  Google Scholar 

  • Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  PubMed  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Particular thanks are due to Fabrice Giusti (UMR 7099) for synthesizing the amphipols used in the present work. The diffraction experiments were performed at the beamline ID23-1 of the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to the ESRF beamline staff for assistance. This work was supported by the program “Chaires d’excellence, édition 2008’’ of the Agence Nationale de la Recherche France, by the Commissariat à l’Énergie Atomique (Institut de Biologie Structurale), by the Helmholtz Gemeinschaft (Research Centre Jülich) Special Topic of Cooperation 5.1 specific agreement, by a Marie Curie grant (Seventh Framework Programme-PEOPLE-2007-1-1-Initial Training Networks, project Structural Biology of Membrane Proteins), by a European Commission Seventh Framework Programme grant for the European Drug Initiative on Channels and Transporters consortium (HEALTH-201924), by the Centre National pour la Recherche Scientifique, by University Paris–7, and by the “Initiative d’Excellence” program of the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01). Vitaly Polovinkin is deeply thankful to the Fondation Nanosciences for financial support. Part of this work was supported by the German Ministry of Education and Research (PhoNa-Photonic Nanomaterials). Protein expression, crystallization experiments and data treatment were supported by Russian Scientific Foundation (project 14-14-00995). We acknowledge support of this work by the Russian Foundation for Basic Research (Research project 13-04-01700), by the Russian program “5Top100” and by the Ministry of Education and Science of the Russian Federation. This work was supported by ONEXIM, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gordeliy.

Additional information

V. Polovinkin and I. Gushchin have contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00232-017-9949-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polovinkin, V., Gushchin, I., Sintsov, M. et al. High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase. J Membrane Biol 247, 997–1004 (2014). https://doi.org/10.1007/s00232-014-9700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9700-x

Keywords

Navigation