Skip to main content
Log in

Effect of air intake temperature on drying time of unhulled rice using a fluidized bed dryer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Rice is one of the important food crops in Indonesia. It is known as a staple food of Indonesian society. The consumption patterns of rice are slowly but surely increase with increasing income, education and access to information. Increasing demand for rice in the country reaches 1.6% per year. One of the problems that arise in the process of rice production is the drying process. Generally, the unhulled rice drying process in Indonesia is carried out directly in the sun. This method has many limitations. In this study, the drying method used is a fluidized bed. The purpose of this study is to determine the effect of the intake air temperature and unhulled rice mass on drying time. The intake air temperatures used were 40, 45, 50 °C. The results show that the fastest drying process to obtain the final moisture content of 13.1% from the initial moisture content of about 22% is achieved using the intake air temperature of 50 °C. The drying process takes about 40 min; however, the increased drying process speed is not linearly with the increase in the intake air temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

C p :

Heat specific (J/kgK)

C pu :

Air heat specific (J/kg°C)

d p :

Particle diameter (m)

εmf :

Porosity

E :

Energy (J)

E 1 :

Sensible heat (J)

E 2 :

Water sensible heat (J)

E 3 :

Water latent heat (J)

E u :

Energy supplied to the fluidized bed (J)

h fg :

Energy of evaporation (J/kg)

KA i :

Initial moisture content (%)

m kp :

Mass of dry product (kg)

m t :

Total mass of product (kg)

m w :

Mass of the water (kg)

T fp :

Final temperature of the product (°C)

T ip :

Initial temperature of the product (°C)

U mf :

Minimum velocity of fluidization (m/s)

V :

Velocity (m/s)

V u :

Bed volume (m3)

V p :

Particle volume (m3)

∀:

Volume (m3)

\( \overset{\cdot }{\forall } \) :

Volumetric rate (m3/s)

Δt :

Drying time (s)

ρ p :

Particle density (kg/m3)

ρ u :

Air density (kg/m3)

η :

Efficiency

T i :

Inlet air temperature (°C)

T o :

Outlet air temperature (°C)

References

  1. Sidik M (2006) Prospect of rice production and food security in East Asia, di dalam peningkatan daya saing beras nasional melalui perbaikan kualitas. Loka karya Nasional, Kerjasama Perum BULOG dengan FATETA IPB, Jakarta

    Google Scholar 

  2. Daulay SB (2005) Pengeringan padi (metode dan peralatan). JurusanTeknologi Pertanian Fakultas Pertanian Universitas Sumatra Utara

  3. Djaeni M, Figiarto R, Ghalfani SL (2012) Peningkatan kualitas gabah dengan proses pengeringan menggunakan zeloit alam pada unggun terfluidasi. Jurnal Teknologi Kimia dan Industri 1(1):206–212

    Google Scholar 

  4. Fudholi A, Othman MY, Ruslan MH, Sopian K (2013) Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. Int J Photoenergy:1–9

  5. Palled V, Desai SR, Anantachar M (2012) Performance evaluation of solar tunnel dryer for chilly drying. Karnataka Journal of Agricultural Science 25(4):472–474

    Google Scholar 

  6. Herawan D (1992) Uji percontohan (pilot testing) pengering cabe merah (capsicum annuum L) tipe konveksi bebas untuk pengusaha tingkat pedesaan. Skripsi, FTP, IPB, Bogor

    Google Scholar 

  7. Mirmanto M, Sulistyowati ED, Okariawan IDK (2016) Effect of radiator type on dryer room temperature distribution and heat transfer rate. JP Journal of Heat and Mass Transfer 13(4):512–532

    Article  Google Scholar 

  8. Mirmanto M, Syahrul S, Sulistyowati ED, Okariawan IDK (2017) Effect of inlet temperature and ventilation on heat transfer rate and water content removal of red chili. J Mech Sci Technol 31(3):1531–1537

    Article  Google Scholar 

  9. Mirmanto M, Sulistyowati ED, Okariawan IDK (2016) Effect of radiator position and mass flux on dryer room heat transfer rate. Results in Physics 6:139–144

    Article  Google Scholar 

  10. Syahrul S, Hamdullahpur F, Dincer I (2002) Thermal analysis in fluidized bed drying of moist particles. Appl Therm Eng 22:1763–1775

    Article  Google Scholar 

  11. Arifianto B, Indarto (2006) Studi karakteristik fluidisasi dan aliran dua fase padat-gas (pasir besi-udara) pada pipa lurus vertikel. Media Teknik 2

  12. Vistanty H (2010) Pengering pasta susu kedelai menggunakan pengering unggun terfluidakan partikel inert. Magister Teknik Kimia Program Pasca Sarjana Universitas Diponegoro, Semarang

    Google Scholar 

  13. Hargono DM, Buchori L (2012) Karakteristik proses pengering jagung dengan metode mixed-adsorption drying menggunakan zeolit pada unggun terfluidisasi. Reaktor 14:33–38

    Article  Google Scholar 

  14. Widjanarko A, Ridwan, Djaeni M, Ratnawati (2012) Penggunaan zeolite sintetis dalam pengeringan gabah dengan proses fluidisasi indirect contatct. Jurnal Teknologi Kimia dan Industri 2(2):103–110

    Google Scholar 

  15. Graciafernandy MA, Ratnawati, Buchori L (2012) Pengaruh suhu udara pengering dan komposisi zeolit 3a terhadap lama waktu pengeringan gabah pada fluidized bed dryer. Momentum 8(2):6–10

    Google Scholar 

  16. Fatchurrozi (2011) Analisis desain fungsional dan kondisilingkungan mikro pada gudang beras:studi kasus gudang bulog dramaga – Bogor. Skripsi, Institut Pertanian Bogor

  17. Soerjandoko RNE (2010) Teknik pengujian mutu beras skala laboratorium. Balai Besar Penelitian Tanaman Padi, Buletin Teknik Pertanian 15(2):44–47

    Google Scholar 

  18. Mahadi (2007) Model system dan analisa pengering produk makanan. USU Repository, Universitas Sumatra Utara

  19. Yahya M (2015) Kajian karakteristik pengering fluidisasi terintegrasi dengan tungku biomassa untuk pengering padi. Jurnal Teknik Mesin 5(2):65–71

    MathSciNet  Google Scholar 

  20. Hasibuan R (2005) Proses pengeringan. Fakultas Teknik Universitas Sumatra Utara, Program Studi Teknik Kimia

    Google Scholar 

  21. Tanggasari D (2014) Sifat teknik dan karakteristik pengering biji jagung (Zea mays L.) pada alat pengering fluidized bed. Fakultas Teknologi Pangan dan Agroindustri Universitas Mataram

  22. Ardani RK, Pradana RN, Nurtono T, Winardi S (2013) Review pengaruh hidrodinamika pada fluidized bed dryer. Jurnal Teknik Pomits 2(3):2

    Google Scholar 

  23. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Howard Brenner, Affiliations and Expertise, Massachusetts Institute of Technology, USA

    Google Scholar 

  24. Syahrul S, Dincer I, Hamdullahpur F (2003) Thermodynamic modeling of fluidized bed drying of moist particles. Int J Therm Sci 42:691–701

    Article  Google Scholar 

  25. Holman JP (1994) Perpindahan kalor. Erlangga, Ciracas

    Google Scholar 

  26. Husain S, Horibe A, Haruki N (2007) Heat and mass transfer analysis of fluidized. Memoirs of the Faculty of Engineering, Okayama University 41:52–62

    Google Scholar 

  27. Syahrul S (2016) The effect of the initial mass of shelled corn for fluidized bed drying system. International Journal on Smart Material and Mechatronics 3(2):1–3

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the Ministry of Research, Technology and Higher Education of Indonesia for the funding through a research grant 2017 and 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Syahrul.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syahrul, S., Mirmanto, M., Hartawan, Y. et al. Effect of air intake temperature on drying time of unhulled rice using a fluidized bed dryer. Heat Mass Transfer 55, 293–298 (2019). https://doi.org/10.1007/s00231-018-2414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2414-3

Navigation