Skip to main content

Advertisement

Log in

Heat transfer enhancement of round pin heat sinks using N-eicosane as PCM: an experimental study

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This experimental work investigates the combination of phase change material (PCM) with thermal storage units to combat excessive heat generation in high application hand-held conveniences. Four heat sink configurations including a no fin and three pin-fin arrays having pin diameters of 2 mm, 3 mm and 4 mm respectively are tested using four discreet volume fractions (0.0, 0.3, 0.6, 0.9) of n-eicosane as PCM under heavy usage power levels of 5–7 W. Round pins, made in aluminum, are incorporated in 9% volume percentage of sink’s bulk to act as thermal conductivity enhancer (TCE) in heat sinks. Parametric probe involved the impact of n-eicosane volume fractions, spatial variation of temperature, Fourier number (Fo), enhancement ratio, Modified Stephan number (Ste*), heat capacity as well as thermal conductance to provide for insights on superior thermal performance for distinct operating conditions of the hand-held. The outturns proclaimed that increasing volume fractions of PCM result in increased service time of the heat sinks. Effect of pin-fin configurations were found to be negligible on spatial temperature variation. Amongst all heat sinks, 3 mm pin-fin arrangement resulted in highest enhancement ratio, heat capacity & thermal conductance for all volume fractions of n-eicosane, thereby, demonstrated best thermal conduct of all four sink arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Ψ :

PCM volume fraction

PCM :

PCM volume, m3

Vs :

heat sink volume, m3

Vf :

total pin volume, m3

Fo :

Fourier Number, Fo = ∝PCMtset/L2

PCM :

Thermal diffusivity (PCM), m2/s

L :

sink length, m

t set :

time required to reach SPT, min

Θ :

Dimensionless temperature

T set :

asymptotic set point temperature, °C

T base :

average heat sink base temperature, °C

T ∞. :

ambient temperature, °C

Ste* :

Modified Stephan Number, Ste = QCP/KPCM λh

Q :

heat input, W

C P :

specific heat (PCM), J/kg K

K PCM :

thermal capacity of PCM, W/m K

h :

sink height, m

λ :

Latent heat (PCM), KJ/Kg

Ф :

TCE volume fraction

ξ :

Enhancement Ratio

tCT(with TCE) :

Time to reach STP of finned heat sink

tCT(without TCE) :

Time to reach STP of un-finned heat sink

c :

Heat capacity, KJ/K

Q :

Heat transferred, KJ

△T :

Change in temperature, K

G :

Thermal conductivity, W/K

P :

Power, W

Tmax :

Maximum temperature after heating phase, K

Tamb :

Room temperature, K

PCM :

phase change material

TCE :

thermal conductivity enhancer

CNC :

computer numeric control

H :

thermocouples on heat sink base

W :

thermocouples in side walls

T :

thermocouples immersed in PCM

TCE :

thermal conductivity enhancer

PDA :

personal digital assistant

LHTMS :

latent heat thermal management system

TSU :

thermal storage unit

TSE :

thermal energy storage

NEPCM :

Nano-enhance phase change material

TM :

thermal management

MNCWT :

multi-wall carbon nanotubes

GNT :

graphene nanoplatelets

CNT:

carbon nanoplates

CF:

carbon foam

SPT:

set point temperature

References

  1. Grimes R, Walsh E, Walsh P (2010) Active cooling of a mobile phone handset. Appl Therm Eng 30(16):2363–2369

    Article  Google Scholar 

  2. Luo Z et al (2008) System thermal analysis for mobile phone. Appl Therm Eng 28(14–15):1889–1895

    Article  Google Scholar 

  3. Sharma RK et al (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 95:193–228

    Article  Google Scholar 

  4. Tan FL, Tso CP (2004) Cooling of mobile electronic devices using phase change materials. Appl Therm Eng 24(2–3):159–169

    Article  Google Scholar 

  5. Kandasamy R, Wang X-Q, Mujumdar AS (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Therm Eng 28(8–9):1047–1057

    Article  Google Scholar 

  6. Nayak KC et al (2006) A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. Int J Heat Mass Transf 49(11–12):1833–1844

    Article  MATH  Google Scholar 

  7. Fok SC, Shen W, Tan FL (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci 49(1):109–117

    Article  Google Scholar 

  8. Setoh G, Tan FL, Fok SC (2010) Experimental studies on the use of a phase change material for cooling mobile phones. International Communications in Heat and Mass Transfer 37(9):1403–1410

    Article  Google Scholar 

  9. Saha SK, Srinivasan K, Dutta P (2008) Studies on optimum distribution of fins in heat sinks filled with phase change materials. J Heat Transf 130(3):034505

    Article  Google Scholar 

  10. Pakrouh R et al (2015) A numerical method for PCM-based pin fin heat sinks optimization. Energy Convers Manag 103:542–552

    Article  Google Scholar 

  11. Saha SK, Dutta P (2010) Heat transfer correlations for PCM-based heat sinks with plate fins. Appl Therm Eng 30(16):2485–2491

    Article  Google Scholar 

  12. Hosseini SMJ et al (2013) Melting of Nanoprticle-enhanced phase change material inside Shell and tube heat exchanger. Journal of Engineering 2013:1–8

    Google Scholar 

  13. Levin PP, Shitzer A, Hetsroni G (2013) Numerical optimization of a PCM-based heat sink with internal fins. Int J Heat Mass Transf 61:638–645

    Article  Google Scholar 

  14. Sebti SS et al (2013) Numerical study of the melting of nano-enhanced phase change material in a square cavity. Journal of Zhejiang University SCIENCE A 14(5):307–316

    Article  Google Scholar 

  15. Alshaer WG et al (2015) Thermal management of electronic devices using carbon foam and PCM/nano-composite. Int J Therm Sci 89:79–86

    Article  Google Scholar 

  16. Fan L-W et al (2015) Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng 75:532–540

    Article  Google Scholar 

  17. Mahmoud S et al (2013) Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl Energy 112:1349–1356

    Article  Google Scholar 

  18. Baby R, Balaji C (2012) Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int J Heat Mass Transf 55(5–6):1642–1649

    Article  Google Scholar 

  19. Baby R, Balaji C (2012) Thermal management of electronics using phase change material based pin fin heat sinks. J Phys Conf Ser 395:012134

    Article  Google Scholar 

  20. Baby R, Balaji C (2013) Thermal optimization of PCM based pin fin heat sinks: an experimental study. Appl Therm Eng 54(1):65–77

    Article  Google Scholar 

  21. Baby R, Balaji C (2014) Thermal performance of a PCM heat sink under different heat loads: an experimental study. Int J Therm Sci 79:240–249

    Article  Google Scholar 

  22. Ali HM, Arshad A (2017) Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf 112:649–661

    Article  Google Scholar 

  23. Arshad A et al (2017) Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng 112:143–155

    Article  Google Scholar 

  24. Ashraf MJ et al (2017) Experimental passive electronics cooling: parametric investigation of pin-fin geometries and efficient phase change materials. Int J Heat Mass Transf 115:251–263

    Article  Google Scholar 

  25. Venkateshan SP (2015) Mechanical measurements 2nd edition. Available from: http://public.eblib.com/choice/publicfullrecord.aspx?p=2008061

  26. B.N. Taylor, (1994) C. E. K., Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, US Department of Commerce, Technology Administration, National Institute of Standards and Technology Gaithersburg, MD

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Nasir.

Ethics declarations

Conflict of interest

The authors of the article have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukh, S., Pasha, R.A. & Nasir, M.A. Heat transfer enhancement of round pin heat sinks using N-eicosane as PCM: an experimental study. Heat Mass Transfer 55, 309–325 (2019). https://doi.org/10.1007/s00231-018-2411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2411-6

Keywords

Navigation