Experimental and numerical CHT-investigations of cooling structures formed by lost cores in cast housings for optimal heat transfer

  • S. Kohlstädt
  • M. Vynnycky
  • A. Gebauer-Teichmann


This paper investigates the cooling performance of six different lost core designs for automotive cast houses with regard to their cooling efficiency. For this purpose, the conjugate heat transfer (CHT) solver, chtMultiregion, of the freely available CFD-toolbox OpenFOAM in its implementation of version 2.3.1 is used. The turbulence contribution to the Navier-Stokes equations is accounted for by using the RANS Menter SST kω model. The results are validated for one of the geometries by comparing with experimental data. Of the six investigated cooling structures, the one that forces the fluid flow to change its direction the most produces the lowest temperatures on the surface of the cast housing. This good cooling performance comes at the price of the highest pressure loss in the cooling fluid and hence increased pump power. It is also found that the relationship between performance and pressure drop is by no means generally linear. Slight changes in the design can lead to a structure which cools almost as well, but at much decreased pressure loss. Regarding the absolute values, the simulations showed that the designed cooling structures are suitable for handling the cooling requirements in the particular applications and that the maximum temperature stays below the critical limits of the electronic components.


Compliance with Ethical Standards

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Adames F (2001) Electric motor housings with integrated heat removal facilities. US Patent 6,222,289Google Scholar
  2. 2.
    Bähr H, Park N, Stephan K (2013) Heat and mass transfer. Springer, BerlinGoogle Scholar
  3. 3.
    Bianchi E, Groppi G, Schwieger W, Tronconi E, Freund H (2015) Numerical simulation of heat transfer in the near-wall region of tubular reactors packed with metal open-cell foams. Chem Eng J 264:268–279CrossRefGoogle Scholar
  4. 4.
    Brunnhuber E (1991) Praxis der Druckgussfertigung. Schiele und Schoen, BerlinGoogle Scholar
  5. 5.
    Çengel Y, Ghajar A (2011) Heat and mass transfer. McGraw Hill Education, New YorkGoogle Scholar
  6. 6.
    Dean R (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluids Eng 100(2):215–223CrossRefGoogle Scholar
  7. 7.
    Dorfman AS (2009) Conjugate problems in convective heat transfer. Taylor & Francis, New YorkzbMATHGoogle Scholar
  8. 8.
    Graf E, Soell G (2003) Vorrichtung zur Herstellung eines Druckgussbauteils mit einem Kern und einem Einlegeteil. DE Patent DE2,001,145,876Google Scholar
  9. 9.
    Graf EDI, Söll GDI (2008) Verfahren zur Herstellung eines Zylinderkurbelgehäuses. DE Patent DE200,710,023,060Google Scholar
  10. 10.
    Hutter C, Zenklusen A, Kuhn S, von Rohr PR (2011) Large eddy simulation of flow through a streamwise-periodic structure. Chem Eng Sci 66(3):519–529CrossRefGoogle Scholar
  11. 11.
    Jasak H, Jemcov A, Tukovic Z (2007) OpenFOAM: a C+ + library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics IUCGoogle Scholar
  12. 12.
    Jordi U, Padovan S, Roos HJ (2013) Verfahren zur Herstellung von Salzkernen. WO Patent PCT/EP2012/068,345Google Scholar
  13. 13.
    Kohlstädt S, Rabus U, Goeke S, Kuckenburg S (2016) Verfahren zur Herstellung eines metallischen Druckgussbauteils unter Verwendung eines Salzkerns mit integrierter Stützstruktur und hiermit hergestelltes Druckgussbauteil. DE Patent DE201,410,221,359Google Scholar
  14. 14.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRefzbMATHGoogle Scholar
  15. 15.
    Lecheler S (2011) Numerische Srömungsberechnung: Schneller Einstieg durch anschauliche Beispiele (German Edition). Vieweg + Teubner VerlagGoogle Scholar
  16. 16.
    Lee S (1995) Optimum design and selection of heat sinks. Eleventh IEEE Semi-ThermTM Symposium 11:48–54Google Scholar
  17. 17.
    Li L, Shi ZS (2012) 3D numerical optimization of a heat sink base for electronics cooling. Int Commun Heat Mass Transfer 39:204–208CrossRefGoogle Scholar
  18. 18.
    Maric T, Höpken J, Mooney K (2014) The OpenFOAM technology primer. Stan MottGoogle Scholar
  19. 19.
    Menter FR (1994) 2-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605CrossRefGoogle Scholar
  20. 20.
    Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer 4(1):625–632Google Scholar
  21. 21.
    Nogowizin B (2010) Theorie und Praxis des Druckgusses, 1st edn. Schiele und Schoen, BerlinGoogle Scholar
  22. 22.
    Perelman TL (1961) On conjugated problems of heat transfer. Int J Heat Mass Transfer 3:293–303CrossRefGoogle Scholar
  23. 23.
    Pope SB (2001) Turbulent flows. IOP Publishing, BristolzbMATHGoogle Scholar
  24. 24.
  25. 25.
    Robertson E, Choudhury V, Bhushan S, Walters D (2015) Validation of openFOAM numerical methods and turbulence models for incompressible bluff body flows. Comput Fluids 123: 122–145MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sara ON (2003) Performance analysis of rectangular ducts with staggered square pin fins. Energy Convers Manag 44:1787–1803CrossRefGoogle Scholar
  27. 27.
    Schneider T, Kohlstädt S, Rabus U (2016) Gehäuse mit Druckgussbauteil zur Anordnung eines elektrischen Fahrmotors in einem Kraftfahrzeug und Verfahren zur Herstellung eines Druckgussbauteils. DE Patent DE201,410,221,358Google Scholar
  28. 28.
    VDI G (2005) VDI-Wärmeatlas, 10th edn. Springer, BerlinGoogle Scholar
  29. 29.
    Versteeg H, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education Limited, LondonGoogle Scholar
  30. 30.
    Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631CrossRefGoogle Scholar
  31. 31.
    Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A: Fluid Dyn 4:1510– 1520MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Casting ResearchVolkswagenGermany
  2. 2.Department of Materials Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations