Skip to main content
Log in

Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Constant (=0.01)

a :

Diameter ratio (=Do/Di)

B :

Constant (=5)

Be :

Bejan number (−)

C p :

Specific heat (J/kg.K)

D H :

Hydraulic diameter (=0.008 m)

e :

Absolute error ([f])

F :

Coefficient (−)

f :

Friction coefficient (−)

f:

key parameter (Pa)

I :

Turbulent intensity (%)

i :

Grid index (−)

K :

Constant (−)

k :

Conduction coefficient (W/m.K)

k 1 :

Constant (−)

L :

Tube length (m)

N :

Cell number (−)

Nu :

Nusselt number (−)

n :

Constant (=3)

P :

Apparent order of discretization scheme (−)

Pr :

Prandtl number (−)

q :

Heat flux (=197.5 W)

Re :

Reynolds number (−)

r :

Ratio of cell numbers (−)

S .”‘ :

Volumetric entropy generation (W/m3.K)

T :

Temperature (K)

u :

x-velocity (m/s)

V :

Velocity magnitude (m/s)

v :

y-velocity (m/s)

x,y :

Coordinate directions (−)

y + :

y-plus (−)

Γ:

Blending function (−)

ε :

Relative error (−)

μ :

Dynamic viscosity (Pa.sec)

ρ :

Density (kg/m3)

ϕ :

Solid volume fraction (−)

ann :

Annulus

bf :

Base fluid

f :

Frictional

gen :

Generation

i :

Inner

in :

Inlet

n :

Non dimensional

nf :

Nanofluid

o :

Outer

p :

Particle

T :

Thermal

References

  1. Abu-Nada E, Masoud Z, Hijazi A (2008) Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. International Communications in Heat and Mass Transfer 35:657–665. https://doi.org/10.1016/j.icheatmasstransfer.2007.11.004

    Article  Google Scholar 

  2. Afrand M (2017) Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. Int J Therm Sci 118:12–23. https://doi.org/10.1016/j.ijthermalsci.2017.04.012

    Article  Google Scholar 

  3. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R (2016) A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq 220:1–13. https://doi.org/10.1016/j.molliq.2016.04.058

    Article  Google Scholar 

  4. Amani E, Nobari MRH (2011) A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature. Energy 36:4909–4918. https://doi.org/10.1016/j.energy.2011.05.035

    Article  Google Scholar 

  5. Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–571

    Article  Google Scholar 

  6. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  7. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E (2016) Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy 101:190–201. https://doi.org/10.1016/j.energy.2016.01.102

    Article  Google Scholar 

  8. El Maakoul A, Laknizi A, Saadeddine S, Ben Abdellah A, Meziane M, El Metoui M (2017) Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy Convers Manag 133:76–86. https://doi.org/10.1016/j.enconman.2016.12.002

    Article  Google Scholar 

  9. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  10. Gnielinski V (2009) Heat transfer coefficients for turbulent flow in concentric annular ducts. Heat Transfer Engineering 30:431–436. https://doi.org/10.1080/01457630802528661

    Article  Google Scholar 

  11. Haghighi EB et al (2014) Experimental study on convective heat transfer of nanofluids in turbulent flow: methods of comparison of their performance. Exp Thermal Fluid Sci 57:378–387. https://doi.org/10.1016/j.expthermflusci.2014.05.019

    Article  Google Scholar 

  12. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191

    Article  Google Scholar 

  13. Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers. Int J Heat Mass Transf 24:1541–1544. https://doi.org/10.1016/0017-9310(81)90220-9

    Article  Google Scholar 

  14. Kuehn TH, Goldstein RJ (2006) An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Fluid Mech 74:695–719. https://doi.org/10.1017/S0022112076002012

    Article  MATH  Google Scholar 

  15. Lee YN, Minkowycz WJ (1989) Heat transfer characteristics of the annulus of twocoaxial cylinders with one cylinder rotating. Int J Heat Mass Transf 32:711–722. https://doi.org/10.1016/0017-9310(89)90218-4

    Article  Google Scholar 

  16. Malvandi A, Heysiattalab S, Ganji DD (2016) Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liq 216:503–509. https://doi.org/10.1016/j.molliq.2016.01.030

    Article  Google Scholar 

  17. Ndenguma DD, Dirker J, Meyer JP (2017) Heat transfer and pressure drop in annuli with approximately uniform internal wall temperatures in the transitional flow regime. Int J Heat Mass Transf 111:429–441. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.064

    Article  Google Scholar 

  18. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  19. Pakravan HA, Yaghoubi M (2013) Analysis of nanoparticles migration on natural convective heat transfer of nanofluids. Int J Therm Sci 68:79–93. https://doi.org/10.1016/j.ijthermalsci.2012.12.012

    Article  Google Scholar 

  20. Ravi Kumar NT, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa ACM (2017) Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. International Communications in Heat and Mass Transfer 81:155–163. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019

    Article  Google Scholar 

  21. Richardson LF, Gaunt JA (1927) The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. Philosophical Transactions of the Royal Society of London Series A, containing papers of a mathematical or physical character 226:299–361

    Google Scholar 

  22. Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160

    Article  MathSciNet  Google Scholar 

  23. Saha G, Paul MC (2015) Heat transfer and entropy generation of turbulent forced convection flow of nanofluids in a heated pipe. International Communications in Heat and Mass Transfer 61:26–36. https://doi.org/10.1016/j.icheatmasstransfer.2014.11.007

    Article  Google Scholar 

  24. Saqr KM, Shehata AI, Taha AA, Abo ElAzm MM (2016) CFD modelling of entropy generation in turbulent pipe flow: Effects of temperature difference and swirl intensity. Appl Therm Eng 100:999–1006. https://doi.org/10.1016/j.applthermaleng.2016.02.014

    Article  Google Scholar 

  25. Shalchi-Tabrizi A, Seyf HR (2012) Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink. Int J Heat Mass Transf 55:4366–4375. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.005

    Article  Google Scholar 

  26. Sheikholeslami M, Rokni HB (2017) Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng 317:419–430. https://doi.org/10.1016/j.cma.2016.12.028

    Article  MathSciNet  Google Scholar 

  27. Siavashi M, Jamali M (2016) Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model. Appl Therm Eng 100:1149–1160. https://doi.org/10.1016/j.applthermaleng.2016.02.093

    Article  Google Scholar 

  28. Siavashi M, Talesh Bahrami HR, Saffari H (2015) Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy 93:2451–2466. https://doi.org/10.1016/j.energy.2015.10.100

    Article  Google Scholar 

  29. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moein Siadaty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siadaty, M., Kazazi, M. Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis. Heat Mass Transfer 54, 2995–3014 (2018). https://doi.org/10.1007/s00231-018-2339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2339-x

Navigation