Skip to main content
Log in

Polymeric film application for phase change heat transfer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

heat transfer surface area; m2

b :

width of heat transfer surface; m

c :

concentration; mol.L−1

CF:

cleanliness factor; −-

E a :

activation energy; kJ.mol−1

g :

gravitational acceleration; m.s−2

h :

heat transfer coefficient; W.m-2.K−1

k :

thermal conductivity; W.m-1.K−1

\( \dot{m} \) :

mass flow rate; kg.s−1

p :

pressure; bar, Pa

R :

molar gas constant; J.mol-1.K−1

R f :

thermal fouling resistance; m2.K.W−1

t :

time; h

T :

absolute temperature; K

U :

overall heat transfer coefficient; W.m-2.K−1

w :

average film velocity; m.s−1

δ :

film thickness; m

Γ :

falling film mass flow per unit of length; kg.s-1.m−1

θ :

contact angle; o

γ :

surface free energy; J.m−2

ν :

kinematic viscosity; m2.s−1

ϱ :

density; kg/m3

σ :

surface tension; J.m−2

ϑ:

temperature; oC

ω :

relative wetted area of heat transfer surface; −-

C :

clean

b :

bulk

cf:

condensate film

cond :

condensing

evap :

evaporation

f :

fouling

ff :

falling film

G :

gas

in :

inlet

lam :

laminar

tot :

total

w :

wall

+ :

increasing flow rate

- :

decreasing flow rate

Bi :

Biot number

Ka :

Kapitza number

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

CFD:

computational fluid dynamics

CIP:

cleaning in place

FEM:

finite element method

PEEK:

polyetheretherketone

PFHX:

polymer film heat exchanger

PP:

polypropylene

PSU:

polysulfone

References

  1. Bart H-J, Dreiser C, Laaber D (2017) Polymer film heat exchangers, in: Innovative heat exchangers (H.-J. Bart & S. Scholl, eds.), Springer, Berlin

  2. Zaheed L, Jachuck RJJ (2005) Performance of a square, cross-corrugated, polymer film, compact, heat-exchanger with potential application in fuel cells. J Power Sources 140:304–310

    Article  Google Scholar 

  3. T’Joen C, Park Y, Wang Q, Sommers A, Han X, Jacobi A (2009) A review on polymer heat exchangers for HVAC&R applications. Int J Refrig 32:763–779

    Article  Google Scholar 

  4. Zaheed L (2003) Cross-corrugated polymer film heat exchanger. PhD thesis, University of Newcastle upon Tyne, UK

  5. Christmann J (2011) Entwicklung eines Fallfilmwärmeübertragers mit Wärmeübertragungsflächen aus Polyetheretherketon, (Berichte aus der Verfahrenstechnik). Dissertation, Shaker Verlag Aachen

  6. Khulbe K, Feng C, Matsuura T (2010) The art of surface modification of synthetic polymeric membranes. J Appl Polym Sci 115:855–895

    Article  Google Scholar 

  7. Dreiser C, Bart H-J (2014) Mineral scale control in polymer film heat exchangers. Appl Therm Eng 65:524–529

    Article  Google Scholar 

  8. Pohl S, Madzgalla M, Manz W, Bart H-J (2015) Biofouling on polymeric heat exchanger surfaces with E.Coli and native biofilms. Biofouling 31:699–707

    Article  Google Scholar 

  9. Christmann J, Krätz L, Bart H-J (2010) Novel polymer film heat exchangers for seawater desalination. Desalin Water Treat 21(1–3):162–174

    Article  Google Scholar 

  10. Dreiser C, Bart H-J (2016) Falling film break-up and thermal performance of thin polymer film heat exchangers. Int J Therm Sci 100:138–144

    Article  Google Scholar 

  11. Laaber D (2016) Usability of polymer film heat exchangers in the chemical industry. TU Kaiserslautern: Dissertation

  12. Reiss H (1992) Warum gibt es Benetzung? Physik unserer Zeit 23(5):204–212

    Article  Google Scholar 

  13. Palzer S, Hiebl C, Sommer K, Lechner H (2001) Einfluss der Rauhigkeit einer Feststoffoberfläche auf den Kontaktwinkel. Chemie Ingenieur Technik 73(8):1032–1038

    Article  Google Scholar 

  14. Dreiser C, Bart H-J (2013) Solvent interactions with polymeric heat transfer surfaces. J Mater Sci Eng 3(9):591–600

    Google Scholar 

  15. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  16. Zisman W (1963) Influence of constitution on adhesion. Ind Eng Chem 55(10):18–38

    Article  Google Scholar 

  17. Wolf, K., 1957. Physik und Chemie der Grenzflächen, Band I. Berlin: Springer-Verlag

  18. Schnabel G, Palen J (2006) Wärmeübergang an senkrechten berieselten Flächen. In: VDI-Wärmeatlas, 10. Auflage. Springer, Berlin, Heidelberg, pp Md 1–Md 8

  19. Paramalingam S, Winchester J, Marsh C (2000) On the fouling of falling film evaporators due to film break-up. Trans Inst Chem Eng 78(Part C):79–84

    Google Scholar 

  20. El-Genk M, Saber H (2002) An investigation of the breakup of an evaporating liquid film, falling down a vertical, uniformly heated wall. J Heat Transf 124:39–50

    Article  Google Scholar 

  21. Hartley D, Murgatroyd W (1964) Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces. Int J Heat Mass Transf 7:1003–1015

    Article  MATH  Google Scholar 

  22. Brauer H (1956) Strömung und Wärmeübergang bei Rieselfilmen. VDI-Forsch Heft 457. VDI Verlag, Düsseldorf

  23. Kapitza P (1965) Wave flow of thin layers of a viscous fluid. In: ter Haar D (ed) Collected papers of P.L. Kapitza, vol 2. Pergamon Press, Oxford

    Google Scholar 

  24. Christmann J, Krätz L, Bart H-J (2012) PEEK film heat transfer surfaces for multi-effect desalination: a mechanical investigation. Appl Therm Eng 38:175–181

    Article  Google Scholar 

  25. Al Lafi A, Hay J (2013) State of the water in crosslinked sulfonated poly(ether ether ketone). J Appl Polym Sci 128(5):3000–3009

    Article  Google Scholar 

  26. Nusselt W (1916) Die Oberflächenkondensation des Wasserdampfes. VDI-Zeitschrift 60:542–575

    Google Scholar 

  27. Müller J, Numrich R (2006) Filmkondensation reiner Dämpfe. In: VDI-Wärmeatlas, 10. Auflage. Springer-Verlag, Berlin, pp Ja1–Ja16

  28. Schnabel G, Schlünder E (1980) Wärmeübergang von senkrechten Wänden an nichtsiedende und siedende Rieselfilme. Verfahrenstechnik 14(2):79–83

    Google Scholar 

  29. Dreiser C (2016) Falling liquid film enhancement, fouling mitigation and conceptual design of polymer heat exchangers, (Berichte aus der Verfahrenstechnik). Dissertation, Shaker Verlag Aachen

  30. Ahlers M, Schlehuber D, Eloo C, Gehrke I, Bart H-J (2016) Herstellung mikrostrukturierter Polymerfolien für Wärmeübertrager: Abformbarkeit und hydrophile Eigenschaften, in „Advanced Materials“, DECHEMA, 5.12.2016, Frankfurt

  31. Epstein N (1983) Thinking about heat transfer fouling: a 5 x 5 matrix. Heat Transfer Eng 4(1):43–56

    Article  Google Scholar 

  32. Albert F, Augustin W, Scholl S (2009) Enhancement of heat transfer in crystallization fouling due to surface roughness. In: Müller-Steinhagen H, Malayeri M, Watkinson A (eds) Proceedings of International Conference on Heat Exchanger Fouling and Cleaning VIII, pp 303–310. Published online: www.heatexchanger-fouling.com

  33. Müller-Steinhagen H (2006) Verschmutzung von Wärmeübertragerflächen. In: VDI-Wärmeatlas, 10. Auflage. Springer, Berling, pp Od 1–Od 30

  34. Müller-Steinhagen, H. & Zettler, H., 2011. Heat exchanger fouling - mitigation and cleaning technologies. 2nd edn. Israel: PP PUBLICO Publications

  35. Fryer P (1989) The uses of fouling models in the design of food process plant. J Soc Dairy Technol 42(1):23–29

    Article  Google Scholar 

  36. Förster M, Augustin W, Bohnet M (1999) Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chem Eng Process 38:449–461

    Article  Google Scholar 

  37. Calhoun A, Chiang E (2006) Determination of the surface energetics of surface modified calcium carbonate using inverse gas chomatography. J Vinyl Addit Technol 12(4):174–182

    Article  Google Scholar 

  38. Pohl S, Madzgalla M, Manz W, Bart H-J (2017) E. coli biofilm characteristics on polymeric heat exchanger surfaces. Chem Eng Technol 40(6):1107–1114

Download references

Acknowledgements

The authors wish to thank DFG (Deutsche Forschungsgemeinschaft) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Bart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bart, HJ., Dreiser, C. Polymeric film application for phase change heat transfer. Heat Mass Transfer 54, 1729–1739 (2018). https://doi.org/10.1007/s00231-017-2249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2249-3

Navigation