Heat and Mass Transfer

, Volume 54, Issue 5, pp 1545–1554 | Cite as

Water sorption equilibria and kinetics of henna leaves

  • Khamsa Sghaier
  • Roman Peczalski
  • Mohamed Bagane
Technical Note


In this work, firstly the sorption isotherms of henna leaves were determined using a dynamic vapor sorption (DVS) device at 3 temperatures (30, 40, 50 °C). The equilibrium data were well fitted by the GAB model. Secondly, drying kinetics were measured using a pilot convective dryer for 3 air temperatures (same as above), 3 velocities (0.5, 1, 1.42 m/s) and 4 relative humidities (20, 30, 35, 40%). The drying kinetic coefficients were identified by fitting the DVS and pilot dryer data by Lewis semi-empirical model. In order to compare the obtained kinetic parameters with literature, the water diffusivities were also identified by fitting the data by the simplified solution of fickian diffusion equation. The identified kinetic coefficient was mainly dependent on air temperature and velocity what proved that it represented rather the external transfer and not the internal one.


  1. 1.
    Courrier de l'environnement de l'INRA n°44, octobre 2001Google Scholar
  2. 2.
    Belghit A, Kouhila M, Boutaleb BC (2000) Experimental study of drying kinetics by forced convection of aromatic plants. Energy Convers Manag 41:1303–1321CrossRefGoogle Scholar
  3. 3.
    Kouhila M, Belghit A, Daguenet M (1999) Approche Expérimentale des courbes de sorption de la Menthe en vue d’un séchage par Energie Solaire. Rev Energ Ren 2:61–68Google Scholar
  4. 4.
    Argyropoulos D, Rainer A, Kohler R, Müller J (2012) Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa Officinalis L.) established by dynamic vapor sorption. LWT Food Sci Technol 47:324–331CrossRefGoogle Scholar
  5. 5.
    Callum AS, Hill Andrew J, Newman NG (2010) The water vapour sorption properties of sitka spruce determined using dynamic vapor sorption apparatus. Wood Sci Technol 44:497–514CrossRefGoogle Scholar
  6. 6.
    Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 77:64–70CrossRefGoogle Scholar
  7. 7.
    Argyropoulos D, Rainer A, Muller J (2011b) Equilibrium moisture contents of a medicinal herb (Melissa Officinalis) and a medicinal mushroom (Lentinula edodes) determined by dynamic vapor sorption. Procedia Food Science 1:165–172CrossRefGoogle Scholar
  8. 8.
    Basu S, Shivhare US, Mujumdar AS (2006) Models for sorption isotherms for foods: a review. Dry Technol 24:917–930. CrossRefGoogle Scholar
  9. 9.
    Al-Muhtaseb AH, McMinn WAM, Magee TR (2002) Moisture sorption isotherm characteristics of food products: a review. Food and Bio-products Processing transactions of the Institution of Chemical Engineers, Part C 80:118–128CrossRefGoogle Scholar
  10. 10.
    Maroulis Z-B, Tsami E, Marinos-Kouris D (1988) Application of GAB model to the sorption isotherms of dried fruits. J of Food Engng 7:63–78CrossRefGoogle Scholar
  11. 11.
    Panchariya PC, Popovic D, Sharma AL (2002) Thin-layer modeling of black tea drying process. J Food Eng 52:349–357Google Scholar
  12. 12.
    Kucuk H, Midilli A, Kilic A, Dincer I (2014) A review on thin-layer drying-curve equations. Dry Technol 32:757–773. CrossRefGoogle Scholar
  13. 13.
    Garan MC, Simal S, Femenia A, Rosselo C (2006) Drying of orange skin: drying kinetics modelling and functional properties. J Food Eng 75:288–295CrossRefGoogle Scholar
  14. 14.
    Doymaz I (2010) Drying of thyme (thymus vulgaris L.) and selection of a suitable thin-layer drying model. Journal of food processing and preservation.
  15. 15.
    Doymaz I (2006) Thin-layer drying behavior of mint leave. J Food Eng 74:370–375Google Scholar
  16. 16.
    Kadam DM, Gupta MK, Kadam VM (2013) Thin layer drying kinetics of henna leaves. Agric Eng 3:85–100Google Scholar
  17. 17.
    Kammoun Bejar A, Boudhrioua Mihoubin N, Kechaou N (2012) Moisture sorption isotherms- experimenntal and mathematical inverstigations of orange (citrus sinensis) peel and leaves. Food Chem 132:1728–1735Google Scholar
  18. 18.
    Garcia-Pérez JV, Carcel JA, Clemente G, Mulet A (2008) Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT 41:18–25CrossRefGoogle Scholar
  19. 19.
    Iglesias HA, Chirife J (1982a) Water sorption parameters for food and food components. Handbook of food isotherms. Academic Press, New YorkGoogle Scholar
  20. 20.
    Menkov ND, Paskalev HM, Galyazkov DI, Kerezieva-Rakova M (1999) Applying the linear equation of correlation of Brunauer-Emmet-teller (BET)- monolayer moisture content with temperature. Nahrung 43:118–121CrossRefGoogle Scholar
  21. 21.
    Bimbenet JJ, Daudin JD, Wolff E (1984) Air drying kinetics of biological particles. In: Proceedings of the fourth international drying symposium, KyotoGoogle Scholar
  22. 22.
    Tasirin SM, Puspasari I, Lun AW, Chai PV, Lee WT (2014) Drying of kaffir lime leaves in a fluidized bed dryer with inert particules: kinetics and quality determination. Industrial Crops Products 61:193–201CrossRefGoogle Scholar
  23. 23.
    Inazu T, Wasaki KI, Furuta T (2003) Effect of air velocity on fresh Japanese noodle (Udon) drying. Lebensm.-Wiss. U.-Technol 36:277–280CrossRefGoogle Scholar
  24. 24.
    Rosselo C, Canellas J, Siml S, Berna A (1992) Simple mathematical model to predict the drying rates of potatoes. J. Agric. Food Chem 40:2374–2378CrossRefGoogle Scholar
  25. 25.
    Zogzas NP, Maroulis ZB, Marinos-Kouris D (1996) Moisture diffusivity data compilation in foodstuffs. Dry Technol 14:2225–2253CrossRefGoogle Scholar
  26. 26.
    Kadam D, Goyal R, Gupta M (2011) Mathematical modeling of convective thin layer drying of basil leaves. Journal of Medicinal Plants Research 5:4721–4730Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Khamsa Sghaier
    • 1
  • Roman Peczalski
    • 2
  • Mohamed Bagane
    • 1
  1. 1.Unité de recherche Thermodynamique Appliquée, Ecole Nationale d’Ingénieurs de GabèsUniversité de GabèsGabèsTunisie
  2. 2.Laboratoire d’Automatique et Génie des Procèdes (LAGEP), UMR CNRS 5007, Domaine de la DouaUniversité de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations