Skip to main content
Log in

Heat transfer experiment on natural convection in a square cavity with discrete sources

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present research investigates the effects of the dimensions and the positions of heating sources in the lateral walls of a square cavity. The temperature distributions in the air and the heat transfer coefficients are measured experimentally by holographic interferometry and compared with the numerical results obtained with Fluent 12.1.4. Experimentally and numerically, it is observed how the sizes and the positions of the heat sources influence the velocity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity (m2 s−1)

g :

Modulus of the gravity vector (m s−2)

H :

Length of the side of the square cavity (m)

k :

Thermal conductivity (Wm−1 K−1)

l :

Heat source length (m)

L :

Cavity depth in the experimental tests (m)

\( \overline{Nu} \) :

Average Nusselt number of the heat source

Nu h :

Local Nusselt number

Nu ave :

Average Nusselt number

Nu higher :

Average Nusselt number of the higher source in the configuration l = H/4

Nu lower :

Average Nusselt number of the lower source in the configuration l = H/4

Nu m−m :

Average Nusselt number in the configuration l = H/2

Pr :

Prandtl number

Ra :

Rayleigh number

T :

Temperature (K)

ΔT :

Temperature difference between the heat sources and cold strips

x :

Cartesian axis direction

X :

Dimensionless Cartesian axis direction

y :

Cartesian axis direction

Y :

Dimensionless Cartesian axis direction

β:

Thermal expansion coefficient (K−1)

ε:

Dimensionless length of the heat source

θ:

Dimensionless temperature

ρ:

Density (kg m−3)

υ:

Kinematic viscosity (m2 s−1)

c :

Cold wall

cal:

Calculated data

exp:

Experimental data

h :

Hot wall

num:

Numerical data

References

  1. Poulikakos P (1985) Natural convection in a confined fluid-filled space driven by a single vertical wall with warm and cold regions. ASME J Heat Transfer 107(1985):867–876

    Article  Google Scholar 

  2. Ishihara I, Matsumoto R, Senoo A (2000) Natural convection in a vertical rectangular enclosure with localized heating and cooling zones. Heat Mass Transf 36:467–472. doi:10.1007/s002310000117

    Article  Google Scholar 

  3. Aydin O, Yang WJ (2000) Natural convection in enclosures with localized heating from below and symmetrical cooling from sides. Int J Num Methods Heat Fluid Flow 10:519–529. doi:10.1108/09615530010338196

    Article  Google Scholar 

  4. Ho CJ, Chang JY (1994) A study of natural convection heat transfer in a vertical rectangular enclosure with two-dimensional discrete heating: effect of aspect ratio. Int J Heat Mass Transf 37:917–925. doi:10.1016/0017-9310(94)90217-8

    Article  MATH  Google Scholar 

  5. Tǖrkoglu H, Yǖcel N (1995) Effects of heater and cooler location on natural convection in square cavities. Numer Heat Transf 27:351–358. doi:10.1080/10407789508913705

    Article  Google Scholar 

  6. Nithyadevi N, Kandaswamy NP, Lee J (2007) Natural convection in a rectangular cavity with partially active side walls. Int J Heat Mass Transf 50:4688–4697. doi:10.1016/j.ijheatmasstransfer.2007.03.050

    Article  MATH  Google Scholar 

  7. Chu HSS, Churchill SW, Patterson SV (1976) The effects of heater size, location, aspect ratio and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels. ASME J Heat Transf 98:194–201. doi:10.1115/1.3450518

    Article  Google Scholar 

  8. Valencia A, Frederick RL (1989) Heat transfer in square cavities with partially active vertical walls. Int J Heat Mass Transf 32:1567–1574. doi:10.1016/0017-9310(89)90078-1

    Article  Google Scholar 

  9. Zhao FY, Liu D, Tang GF (2007) Resonant response of fluid flow subjected to discrete heating elements. Energy Convers Manage 48:2461–2472. doi:10.1016/j.enconman.2007.04.008

    Article  Google Scholar 

  10. Zhao FY, Liu D, Tang GF (2008) Natural convection in an enclosure with localized heating and salting from below. Int J Heat Mass Transf 51:2889–2904. doi:10.1016/j.ijheatmasstransfer.2007.09.032

    Article  MATH  Google Scholar 

  11. Zhao FY, Liu D, Tang GF (2008) Natural convection in a porous enclosure with a partial heating and salting element. Int J Thermal Sci 47:569–583. doi:10.1016/j.ijthermalsci.2007.04.006

    Article  Google Scholar 

  12. Paroncini M, Corvaro F, Montucchiari A (2009) A 2D-PIV study on natural convective heat transfer in a square enclosure with partially active side walls. ASME J Heat Transf 1:19–23

    Google Scholar 

  13. Paroncini M, Corvaro F, Montucchiari A, Nardini G (2010) An experimental analysis on the natural convection in a square cavity with concentrated energy sources. ASME-ATI-UIT 2010 conference on thermal and environmental issues in energy systems, vol 1, pp 1107–1112. ISBN 978-884672659-9

  14. Deng Q-H (2008) Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source-sink pairs. Int J Heat Mass Transf 51:5949–5957. doi:10.1016/j.ijheatmasstransfer.2008.04.062

    Article  MATH  Google Scholar 

  15. Bazylak A, Djilali N, Sinton D (2006) Natural convection in an enclosure with distributed heat sources. Numer Heat Transf A 49:655–667. doi:10.1080/10407780500343798

    Article  Google Scholar 

  16. Liu Y, Phan-Thien N, Leung CW, Chan TL (1999) An optimum spacing problem for five chips on a horizontal substrate in a vertically insulated enclosure. Comput Mech 24:310–318. doi:10.1007/s004660050520

    Article  MATH  Google Scholar 

  17. Liu Y, Phan-Thien N (2000) An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure. Numer Heat Transf A 37:613–630. doi:10.1080/104077800274118

    Article  Google Scholar 

  18. Dias JT, Milanez LF (2006) Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms. Int J Heat Mass Transf 49:2090–2096. doi:10.1016/j.ijheatmasstransfer.2005.11.031

    Article  MATH  Google Scholar 

  19. Da Silva AK, Lorente S, Bejan A (2004) Optimal distribution of discrete heat sources on a wall with natural convection. Int J Heat Mass Transf 47:203–214. doi:10.1016/j.ijheatmasstransfer.2003.07.007

    Article  MATH  Google Scholar 

  20. Randriazanamparany M, Skouta A, Daguenet M (2005) Numerical study of the transition toward chaos of two-dimensional natural convection within a square cavity. Numer Heat Transf A 48:127–147. doi:10.1080/10407780490454386

    Article  Google Scholar 

  21. Banerjee S, Mukhopadhyay A, Sen S, Ganguly R (2008) Natural convection in a biheater configuration of passive electronic cooling, Int J Therm Sci 47. doi:10.1016/j.ijthermalsci.2007.12.004

  22. ANSYS FLUENT 12.0/12.1 Documentation. http://www.sharcnet.ca/Software/Fluent12/index.htm

  23. Hauf W, Grigull U (1970) Optical methods in heat transfer. In: JP Harnett, TF Irvine Jr. (eds) Advances in Heat transfer, Academic Press, New York, pp 133–311. doi:10.1016/S0065-2717(08)70151-5

Download references

Acknowledgments

This study is financially supported by the following project: PRIN 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardini, G., Paroncini, M. Heat transfer experiment on natural convection in a square cavity with discrete sources. Heat Mass Transfer 48, 1855–1865 (2012). https://doi.org/10.1007/s00231-012-1026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1026-6

Keywords

Navigation