Skip to main content
Log in

Natural convection of nano-fluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Fluids with nano size solid particles suspended in them have been given the name nano-fluid which in recent studies have shown tremendous promise as heat transfer fluids. However, before suggesting such fluids for applications a thorough knowledge of physical mechanism of heat transfer in such fluids is wanted. The present study deals with one such aspect of natural convection of nano fluids inside horizontal cylinder heated from one end and cooled from the other. An apparently paradoxical behaviour of heat transfer deterioration was observed in the experimental study. Nature of this deterioration and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated. The fluid shows characters distinct from that of common slurries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. Chiba T; Okada M; Matsumoto K (1992) Melting process of clathrate in a rectangular cell. Trans Jpn Assoc Refrigeration 9: 169–179

    Google Scholar 

  2. Maxwell JC (1881) A Treatise on Electricity and Magnetism, 2nd Ed., Vol. 1. Clarendon Press, Oxford, UK, p 435

  3. Lee S; Choi US; Li S; Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transfer 121: 280–289

    Google Scholar 

  4. Choi US (1995) Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows, Siginer DA, Wang HP (eds) FED vol. 231/MD-Vol. 66, ASME, New York, pp 99–105

  5. Xuan Y; Li Q (2000) Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow 21, pp 58–64

    Google Scholar 

  6. Hamilton RL; Crosser OK (1962) Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals, 1: 187–191

  7. Wasp FJ (1977) Solid-Liquid Slurry Pipeline Transportation, Trans. Tech., Berlin

  8. Das SK; Putra N; Thiesen P; Roetzel W (2001) Temperature dependence of thermal conductivity enhancement for nanofluids, communicated to J Heat Transfer, Trans ASME

  9. Eastman JA; Choi US; Li S; Thompson LJ; Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. Proc Symposium on Nanophase and Nanocomposite Materials II, Vol 457, material Research Society, Boston, pp 3–11

  10. Eastman JA; Choi US; Li S; Yu W; Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett, 78: 718–720

    Google Scholar 

  11. Xuan Y; Roetzel W (2000) Conceptions for heat correlation of nanofluids, Int. Journal of Heat and Mass Transfer 43: 3701–3707

    Google Scholar 

  12. Okada M; Suzuki T (1997) Natural convection of water-fine particle suspension in a rectangular cell, Int. J. Heat Mass Transfer, 40: 3201–3208

    Google Scholar 

  13. Kang C; Okada M; Hattori A; Oyama K (2001) Natural convection of water-fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of the natural convection in the case of suspension with narrow-size distribution), Int. Journal of Heat and Mass Transfer, 44: 2973–2982

    Google Scholar 

  14. Okada M; Oyama K; Kang C (1998) Natural convection of water- or aqueous solution-fine particle suspension in a rectangular cell, in: Proceeding of the 11th International Heat Transfer Conference, vol. 3, Taylor Levittown, PA, pp 525–530

Download references

Acknowledgements

This research work has been carried out during the stay of the third author at the University of the Federal Armed Forces, Hamburg under the Humboldt Research Fellowship which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Roetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putra, N., Roetzel, W. & Das, S.K. Natural convection of nano-fluids. Heat and Mass Transfer 39, 775–784 (2003). https://doi.org/10.1007/s00231-002-0382-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-002-0382-z

Keywords

Navigation