Advertisement

manuscripta mathematica

, Volume 96, Issue 4, pp 397–419 | Cite as

Fonction L unité d'un groupe de Barsotti-Tate

  • Fabien Trihan

Abstract:

The purpose of this article is to give a cohomological formula for the unit-root part of the L-function associated to a Barsotti-Tate group G on a scheme S over a field of characteristic p when G extends to some compactification of S. This is an analogue of a part of a conjecture of Katz according to wich the L-function of an F-crystal should be expressed in terms of the p-adic etale sheaf corresponding to the unit-root part of the crystal. In order to carry out this project, we use the technics of [E-LS II] wich require in our case an extension of the Dieudonné crystalline theory ([B-B-M]) to “crystal of level mG” in the sense of Berthelot. We show that the unit-root L-function of the Dieudonné crystal associated to G can be expressed in terms of the syntomic cohomology of the Ext group of G by the constant sheaf.

Mathematics Subject Classification (1991):14F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Fabien Trihan
    • 1
  1. 1.Laboratoire de Mathématiques, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes Cedex, France. e-mail: trihan@univ-rennes1.frFR

Personalised recommendations