Abstract
In this paper, we show that the motive of the quaternionic Grassmannian \(HP^n\) (as defined by I. Panin and C. Walter) splits in the category of effective MW-motives (as defined by B. Calmès, F. Déglise and J. Fasel). Moreover, we extend this result to an arbitrary symplectic bundle, obtaining the so-called quaternionic projective bundle theorem. Finally, we give the Gysin triangle in MW-motivic cohomology.
This is a preview of subscription content, access via your institution.
References
- 1.
Asok, A., Fasel, J.: Comparing Euler classes. Q. J. Math. 67(4), 603–635 (2016)
- 2.
Ananyevskiy, A.: The special linear version of the projective bundle theorem. Compositio Math. 151(3), 461–501 (2015)
- 3.
Ananyevskiy, A.: On the the relation of special linear algebraic cobordism to Witt groups. Homology Homotopy Appl. 18(1), 205–230 (2016)
- 4.
Ananyevskiy, A.: \(SL\)-oriented cohomology theories. arXiv:1901.01597v2 (2019)
- 5.
Cisinski, D.C., Déglise, F.: Local and stable homological algebra in Grothendieck Abelian categories. Homology Homotopy Appl. 11(1), 219–260 (2009)
- 6.
Cisinski, D.C., Déglise, F.: Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics, Springer (2019)
- 7.
Calmès, B., Fasel, J.: The category of finite Chow–Witt correspondences. arXiv:1412.2989 (2014)
- 8.
Déglise, F.: Around the Gysin Triangle I, Regulator. Contemporary Mathematics, pp. 77–116. The American Mathematical Society, Providence (2012)
- 9.
Déglise, F.: Finite correspondences and transfers over a regular base. Algebraic Cycles and Motives. London Math. Soc. Lecture Note Ser., vol. 343, pp. 138–205. Cambridge university press, Cambridge (2007)
- 10.
Déglise, F., Fasel, J.: MW-Motivic complexes. arXiv:1708.06095 (2017)
- 11.
Fasel, J.: Groupes de Chow–Witt Mém. Soc. Math. Fr. (N.S.) 113, viii+197 (2008)
- 12.
Fasel, J.: The projective bundle theorem for \(I^j\)-cohomology. J. K-Theory 11(2), 413–464 (2013)
- 13.
Fasel, J., Østvær, P.A.: A cancellation theorem for Milnor–Witt correspondences. arXiv:1708.06098 (2016)
- 14.
Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)
- 15.
J. Hornbostel and M. Wendt, Chow–Witt rings of classifying spaces for symplectic and special linear groups. arXiv:1703.05362v3
- 16.
Kleiman, S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Publ. Math. IHES 36, 281–297 (1969)
- 17.
Krause, H.: Localization theory for triangulated categories. In: Holm, T., Jørgensen, P., Rouquier, R. (eds.) Triangulated categories, 161–235, London Math. Soc. Lecture Note Ser., vol. 375. Cambridge Univ. Press, Cambridge (2010)
- 18.
Kleiman, S.L., Laksov, D.: Schubert calculus. Am. Math. Mon. 79(10), 1061–1082 (1972)
- 19.
Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton (1980)
- 20.
Morel, F.: \({\mathbb{A}}^1\)-Algebraic Topology over a Field. Lecture Notes in Math. Springer, New York (2012)
- 21.
Morel, F., Voevodsky, V.: \({\mathbb{A}}^1\)-Homotopy theory of schemes. Publ. Math. IHES 90, 45–143 (1999)
- 22.
Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge (2006)
- 23.
Panin, I.: Push-forwards in oriented cohomology theories of algebraic varieties: II. www.math.uiuc.edu/K-theory/0619/pushsep.pdf
- 24.
Panin, I.: Oriented cohomology theories of algebraic varieties. K-Theory 30, 265–314 (2003)
- 25.
Panin, I., Smirnov, A.: Riemann–Roch theorems for oriented cohomology. In: Greenlees, J.P.C. (ed.) Axiomatic, Enriched and Motivic Homotopy Theory. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 131. Springer, Dordrecht (2004)
- 26.
I. Panin, C. Walter, Quaternionic grassmannians and Pontryagin Classes in algebraic geometry, arXiv:1011.0649 (2010)
- 27.
Shafarevich, I.R.: Basic Algebraic Geometry, 2nd edn. Springer, Berlin (1994)
- 28.
Suslin, A., Voevodsky, V.: Bloch–Kato conjecture and motivic cohomology with finite coefficients. www.math.uiuc.edu/K-theory/0341/susvoenew.pdf
- 29.
Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994)
- 30.
Yang, N.: General motivic cohomology and symplectic orientation. arXiv:1810.12802v1 (2018)
Acknowledgements
The author would like to thank his PhD advisor J. Fasel for giving me the basic idea of this article and helping during the subsequent research, and F. Déglise for helpful discussions. The careful work of the referee is also greatly appreciated.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partially supported by ERC ALKAGE.
Rights and permissions
About this article
Cite this article
Yang, N. Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology. manuscripta math. 164, 39–65 (2021). https://doi.org/10.1007/s00229-019-01171-4
Received:
Accepted:
Published:
Issue Date:
Mathematics Subject Classification
- Primary: 11E81
- 14F42